Magnetic liquids improve energy efficiency of buildings by Staff Writers Jena, Germany (SPX) Jan 19, 2018
Climate protection and the reduction of carbon dioxide emissions have been on top of global development agendas. Accordingly, research and development projects have been conducted on national and international levels, which aim for the improvement of the CO2-footprint in diverse processes. Apart from particularly energy-intensive sectors of the industry, the building sector in particular is among the biggest CO2-emmitters: from residential homes, manufacturing facilities and storage depots to big commercial buildings, about 40 percent of the energy consumption within the EU are due to the heating, cooling, air conditioning and lighting of buildings. Considering next-generation smart windows and facade devices, one aspect of this problem is addressed in the research project Large-Area Fluidic Windows (LaWin) which has been coordinated at the Friedrich Schiller University Jena, Germany, since 2015. A new type of such smart windows was now presented in the upcoming issue of Advanced Sustainable Systems. In their paper 'Large-Area Smart Window with Tunable Shading and Solar-Thermal Harvesting Ability Based on Remote Switching of a Magneto-Active Liquid' the Jena materials researchers introduce prototypes of a window that changes its light permeability at the touch of a button, and, at the same time, can be used for solar-thermal energy harvesting (DOI: 10.1002/adsu.201700140). The subject will be featured on the title page of the journal.
Liquids in windows and facades "To this end we develop new glass materials, into which large-area channel structures are integrated. These are used for circulating functional fluids." In latest prototypes, the liquid is loaded with the nanoscale magnetic iron particles. These can be extracted from the liquid with the help of a magnet. Vice versa, they can be re-suspended by simply switching-off the magnet. "Depending on the number of the iron particles in the liquid, the liquid itself takes on different shades of grey, or it will even turn completely black," Wondraczek explains. "Then, it becomes possible to automatically adjust the incidence of light, or to harvest solar heat which can then be put to further use within the building." The efficiency in terms of heat gain per area is comparable with that of state-of-the-art solar thermal facilities. But unlike those, the present system can be readily integrated in a vertical facade. Switching between on and off - the release or capture of particles - happens in a separate tank. An electrical connection at the windows is not necessary.
Indoor air conditioning, tunable shading and harvesting of solar heat Developing cost-effective large-size window glass modules is key. On the one hand the glass elements need to include the channels, on the other hand they maintain their performance over the whole lifespan of the building. Finally, they have to provide the ability for integration with standard window manufacture technologies in frames of double or triple glazings. With the present prototypes which were manufactured on a scale of around 200 square meters, the research consortium demonstrated that those requirements can be fulfilled. Over the period of 2015-2017, the project received a grant of 5.9 million Euros from the European Union within the framework of the Horizon-2020-Programme for Industrial Leadership. A further 2.2 million Euro have been added by eleven industry partners who have been members of the consortium. After the end of the first funding period, commercialisation of first applications is planned for this year.
Washington (AFP) Jan 9, 2018 The US energy watchdog terminated Monday a key proposal by President Donald Trump's administration to subsidize coal and nuclear plants, finding it neither justified nor reasonable. The decision by the Federal Energy Regulatory Commission (FERC) was handed down in a unanimous verdict by its five members, a majority of whom belong to the president's Republican Party. Energy Secretary Rick ... read more Related Links Friedrich-Schiller-Universitaet Jena
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |