Energy News  
ENERGY TECH
Low-cost battery from waste graphite
by Staff Writers
Zurich, Switzerland (SPX) Oct 16, 2017


Kish graphite is a waste product from steel production. It could be used to make a cheap rechargeable battery out of abundant materials. Image courtesy Empa and ETH Zurich.

Kostiantyn Kravchyk works in the group of Maksym Kovalenko. This research group is based at both ETH Zurich and in Empa's Laboratory for Thin Films and Photovoltaics. The two researchers' ambitious goal at the Empa branch is to make a battery out of the most common elements in the Earth's crust - such as magnesium or aluminum.

These metals offer a high degree of safety, even if the anode is made of pure metal. This also offers the opportunity to assemble the batteries in a very simple and inexpensive way and to rapidly upscale the production.

In order to make such batteries run, the liquid electrolyte needs to consist of special ions that do not crystallize at room temperature - i.e. form a kind of melt. The metal ions move back and forth between the cathode and the anode in this "cold melt", encased in a thick mantle of chloride ions.

Alternatively, large but lightweight organic anions, which are metal-free, could be used. This does come with a problem, though: where are these "thick" ions supposed to go when the battery is charged? What could be a suited cathode material?

By way of comparison: in lithium ion batteries, the cathode is made of a metal oxide, which can easily absorb the small lithium cations during charging. This does not work for such large ions, however. In addition, these large anions have an opposite charge to the lithium cations.

Battery turned "upside down"
To solve the problem, Kovalenko's team had a trick up their sleeves: the researchers turned the principle of the lithium ion battery upside down. In conventional Li-ion batteries, the anode (the negative pole) is made of graphite, the layers of which (in a charged state) contain the lithium ions. In Kovalenko's battery, on contrary, the graphite is used as a cathode (the positive pole). The thick anions are deposited in-between the graphene layers. In Kovalenko's battery, the anode is made of metal.

Kravchyk made a remarkable discovery while searching for the "right" graphite: he found that waste graphite produced in steel pro-duction, referred to as "kish graphite", makes for a great cathode material. Natural graphite also works equally well - if it is supplied in coarse flakes and not ground too finely or into folded, non-flake shapes.

The reason: the graphite layers are open at the flakes' edges and the thick anions are thus able to slip into the structure more easily. The fine-ground graphite normally used in lithium ion batteries, however, is ill-suited for Kovalenko's battery: by grinding the graphite particles, the layers become creased like crumpled-up paper. Only small lithium ions are able to penetrate this crumpled graphite, not the new battery's thick anions.

The graphite cathode battery constructed from steel production "kish graphite" or raw, natural graphite flakes has the potential to become highly cost-effective. And if the first experiments are anything to go by, it is also long-lasting. For several months, a lab system survived thousands of charging and discharging cycles.

"The aluminum chloride - graphite cathode battery could last decades in everyday household use," explains Kravchyk and adds "similar demonstrations, but further increased battery voltages, without compromising capacities, and of even lighter elements are on the way and will offer further increase in energy densities from current 60 Wh kg-1 to above 150 Wh kg-1"

Research paper

ENERGY TECH
Sodium could replace lithium for more cost-efficient battery storage
Washington (UPI) Oct 10, 2017
Researchers at Stanford University have built a sodium-based battery that can store just as much energy as a lithium-ion battery, but at a significantly reduced cost. Lithium-ion batteries have been the standard bearer for the last 25 years. But lithium is becoming increasingly scarce and mining costs are steep. Sodium - which also hosts ions that can be moved from a cathode to ... read more

Related Links
Swiss Federal Laboratories for Materials Science and Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
'Fuel-secure' steps in Washington counterintuitive, green group says

SLAC-led project will use AI to prevent or minimize electric grid failures

Scientists propose method to improve microgrid stability and reliability

ADB: New finance model needed for low-carbon shift in Asia

ENERGY TECH
Sodium could replace lithium for more cost-efficient battery storage

Tesla delays truck launch, eyes battery power for Puerto Rico

A new way to produce clean hydrogen fuel from water using sunlight

New nanomaterial can extract hydrogen fuel from seawater

ENERGY TECH
OX2 hands over Ajos wind farm to IKEA Finland

Huge energy potential in open ocean wind farms in the North Atlantic

Wind farms in Atlantic could power the world: study

Germany gets economic lift with wind energy

ENERGY TECH
Solar panels shine in darkest Amazon, the 'last frontier'

Total moves deeper into solar energy market

Flying Dutch win world solar car race in Australia

Statoil taps solar market in Brazil

ENERGY TECH
Greenpeace fireworks shine light on French nuclear safety concerns

Japan government, TEPCO liable for Fukushima crisis: court

New 'molecular trap' cleans more radioactive waste from nuclear fuel rods

French, Belgian nuke plants vulnerable to attack: Greenpeace

ENERGY TECH
NGOs slam UN aviation agency plan for biofuels

Breakthrough in direct activation of CO2 and CH4 into liquid fuels and chemicals

Surrounded by potential: New science in converting biomass

A key step in synthetic fuel production from seawater patented by NRL

ENERGY TECH
Chevron abandons Great Australian Bight drill plans

Kurdish oil export payments continue after referendum

Canadian trade group makes pitch for global edge

Iranian energy companies lay out investment options in Amsterdam

ENERGY TECH
As Paris climate goals recede, geoengineering looms larger

'Plan B': Seven ways to engineer the climate

British government unveils green spending plans

Cheaper to invest in climate change fight than to rebuild; EPA chief rolls back US plans









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.