Liquified gas electrolytes power new lower-temperature battery by Brooks Hays Washington (UPI) Jun 16, 2017 Scientists at the University of California, San Diego have developed new electrolytes capable of powering batteries at temperatures as low as negative 80 degrees Celsius. The technology could help make lithium ion batteries safer and more efficient, as well as boost the range of electric vehicles during cold winter months. The new batteries could also power vehicles and instruments operating in extreme cold, like space rovers, satellites and high-alitiude weather baloons. The electrolytes are composed of liquefied gas solvents. Many gases require extreme pressure to liquify. Gases that liquify at moderate pressures are less apt to freeze. To create their battery's electrolyte, researchers liquified fluoromethane gas. For the capacitor electrolyte, scientists liquified difluoromethane gas. "Better batteries are needed to make electric cars with improved performance-to-cost ratios," Shirley Meng, a nanoengineering professor at UCSD, said in a news release. "And once the temperature range for batteries, ultra-capacitors and their hybrids is widened, these electrochemical energy storage technologies can be adopted in many more emerging markets." Electrolytes have been identified as one the main barriers inhibiting efficiency improvements in lithium ion battery technology. Many researchers have abandoned liquid electrolytes in favor of battery model using solid state electrolytes. "We have taken the opposite, albeit risky, approach and explored the use of gas based electrolytes," said Cyrus Rustomji, a postdoctoral researcher at UCSD. Aside from efficiency, one of the biggest problems with lithium ion batteries is their tendency to catch on fire. When electrolytes overheat, they can trigger a chemical chain reaction that generates extreme temperatures inside the battery. The liquified gas electrolytes limit this risk, ensuring internal temperatures remain moderate. The electrolyte works like an emergency off switch. "As soon as the battery gets too hot, it shuts down. But as it cools back down, it starts working again," Rustomji said. "That's uncommon in conventional batteries." Additionally, the electrolyte's unique chemical makeup prevent the build up of lithium metal on the battery's electrodes. Inside commercial lithium ion batteries, lithium deposits called dendrites can grow like tiny stalagmites, eventually piercing battery components and causing the circuitry to short out. Researchers hope to continue improving their battery's efficiency and low-temperature abilities. They detailed their most recent electrolyte breakthrough in the journal Science.
Berlin, Germany (SPX) Jun 20, 2017 Advances in battery technology are challenging automakers and their suppliers to meet higher market demand for hybrid and electric vehicles without compromising quality. 2017 marks the 20th anniversary of the Toyota Prius, the world's first widely-available hybrid electric vehicle (HEV). Since then more than 12 million HEVs have been sold around the world. Yet sales of HEVs and their full-electr ... read more Related Links Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |