Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Wireless power transfer technology for high capacity transit
by Staff Writers
Daejeon, Republic of Korea (SPX) Feb 25, 2013


This shows the shaped magnetic field in resonance. Credit: KAIST.

The Korea Advanced Institute of Science and Technology (KAIST) and the Korea Railroad Research Institute (KRRI) have developed a wireless power transfer technology that can be applied to high capacity transportation systems such as railways, harbor freight, and airport transportation and logistics. The technology supplies 60 kHz and 180 kW of power remotely to transport vehicles at a stable, constant rate.

KAIST and KRRI have successfully showcased the wireless power transfer technology to the public by testing it on the railroad tracks at Osong Station in Korea. Originally, this technology was developed as part of an electric vehicle system introduced by KAIST in 2011 known as the On-line Electric Vehicle (OLEV).

OLEV does not need to be parked at a charging station to have a fully powered battery. It gets charged while running, idling, and parking, enabling a reduction in size of the reserve battery down to one-fifth of the battery on board a regular electric car.

The initial models of OLEV, a bus and a tram, receive 20 kHz and 100 kW power at an 85% transmission efficiency rate while maintaining a 20cm air gap between the underbody of vehicle and the road surface.

OLEV complies with the national and international standards of 62.5 mG, a safety net for electromagnetic fields. In July 2013, for the first time since its development, OLEV will run on a regular road, an inner city route in the city of Gumi, requiring 40 minutes of driving each way.

Today's technology demonstration offers further support that OLEV can be utilized for large-scale systems. Professor Dong-Ho Cho, Director of Center for Wireless Power Transfer Technology Business Development at KAIST, explained the recent improvements to OLEV:

"We have greatly improved the OLEV technology from the early development stage by increasing its power transmission density by more than three times. The size and weight of the power pickup modules have been reduced as well. We were able to cut down the production costs for major OLEV components, the power supply, and the pickup system, and in turn, OLEV is one step closer to being commercialized."

If trains receive power wirelessly, the costs of railway wear and tear will be dramatically reduced. There will be no power rails, including electrical poles, required for the establishment of a railway system, and accordingly, lesser space will be needed. Tunnels will be built on a smaller scale, lowering construction costs.

In addition, it will be helpful to overcome major obstacles that discourage the construction of high speed railway systems such as noise levels and problems in connecting pantograph and power rails.

KAIST and KRRI plan to apply the wireless power transfer technology to trams in May and high speed trains in September.

.


Related Links
The Korea Advanced Institute of Science and Technology (KAIST)
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Vortex pinning could lead to superconducting breakthroughs
Argonne IL (SPX) Feb 25, 2013
A team of researchers from Russia, Spain, Belgium, the U.K. and the U.S. Department of Energy's (DOE) Argonne National Laboratory announced findings last week that may represent a breakthrough in applications of superconductivity. The team discovered a way to efficiently stabilize tiny magnetic vortices that interfere with superconductivity-a problem that has plagued scientists trying to e ... read more


ENERGY TECH
Nation Could Double Energy Productivity

China energy consumption rises 3.9% in 2012

Beijing's Pollution Alarms Neighbors

Quantum cryptography put to work for electric grid security

ENERGY TECH
Turning carbon dioxide to fuel

Scaling up production of graphene micro-supercapacitors

Wireless power transfer technology for high capacity transit

Chevron pursues Australian shale

ENERGY TECH
Global wind energy capacity grows 19 percent in 2012

Finding the right space for offshore wind turbines

Spotting the invisible cracks in wind turbines

New framework for wind energy assessments

ENERGY TECH
SOLON Completes 5MW Prairie Fire Solar Plant

Physicists propose 'wireless' solar cells

SunWize to Develop Two Solar Photovoltaic Projects in Ecuador

ReneSola PV Module Installations Top 100 MW in Greece

ENERGY TECH
Technical hitch closes Slovenian nuclear plant

Taiwan mulls nuke plant referendum

Finland's Fennovoima may downsize reactor plans

Trust our nuclear technology: French president to India

ENERGY TECH
Engineering cells for more efficient biofuel production

Avoiding virus dangers in 'domesticating' wild plants for biofuel use

U.S. grasslands losing to biofuel crops

What green algae are up to in the dark

ENERGY TECH
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

ENERGY TECH
Global warming: Heat stress hits labour productivity

German greenhouse gas emissions rose in 2012

Climate change is not an all-or-nothing proposition

Climate change's costly wild weather consequences




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement