Energy News  
ENERGY TECH
How to predict crucial plasma pressure in future fusion facilities
by Staff Writers
Plainsboro NJ (SPX) Sep 23, 2019

file illustration

A key requirement for future facilities that aim to capture and control on Earth the fusion energy that drives the sun and stars is accurate predictions of the pressure of the plasma - the hot, charged gas that fuels fusion reactions inside doughnut-shaped tokamaks that house the reactions.

Central to these predictions is forecasting the pressure that the scrape-off layer, the thin strip of gas at the edge of the plasma, exerts on the divertor - the device that exhausts waste heat from fusion reactions.

Researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed new insights into the physics governing the balance of pressure in the scrape-off layer.

This balance must ensure that the pressure of the plasma throughout the tokamak is high enough to produce a largely self-heating fusion reaction. The balance must also limit the potentially damaging impact of heat and plasma particles that strike the divertor and other plasma-facing components of the tokamak.

"Previous simple assumptions about the balance of pressure in the scrape-off layer are incomplete," said PPPL physicist Michael Churchill, lead author of a Nuclear Fusion paper that describes the new findings. "The codes that simulate the scrape-off layer have often thrown away important aspects of the physics, and the field is starting to recognize this."

Fusion, the power that drives the sun and stars, is the fusing of light elements in the form of plasma - the hot, charged state of matter composed of free electrons and atomic nuclei - that generates massive amounts of energy. Scientists are seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.

Key factors
Churchill and PPPL colleagues determined the key factors behind the pressure balance by running the state-of-the-art XGCa computer code on the Cori and Edison supercomputers at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility. The code treats plasma at a detailed kinetic - or particle motion-- level rather than as a fluid.

Among key features found was the impact of the bulk drift of ions, an impact that previous codes have largely ignored. Such drifts "can play an integral role" the authors wrote, and "are very important to take into account."

Also seen to be important in the momentum or pressure balance were the kinetic particle effects due to ions having different temperatures depending on their direction.

Since the temperature of ions is hard to measure in the scrape-off layer, the paper says, "increased diagnostic efforts should be made to accurately measure the ion temperature and flows and thus enable a better understanding of the role of ions in the SOL."

The new findings could improve understanding of the scrape-off layer pressure at the divertor, Churchill said, and could lead to accurate forecasts for the international ITER experiment under construction in France and other next-generation tokamaks.

Research paper


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
New technique could streamline design of intricate fusion device
Plainsboro NJ (SPX) Aug 23, 2019
Stellarators, twisty machines that house fusion reactions, rely on complex magnetic coils that are challenging to design and build. Now, a physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has developed a mathematical technique to help simplify the design of the coils, making stellarators a potentially more cost-effective facility for producing fusion energy. "Our main result is that we came up with a new method of identifying the irregular magnetic fiel ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Vast Iraq power plant to be rebuilt; Plugs into Gulf power grid

Germany planning climate action worth over 100 bn euros

Italy's Enel to reduce C02 emissions 70% by 2030

Macro-energy systems and the science of the energy transition

ENERGY TECH
First report of superconductivity in a nickel oxide material

Breakthrough enables storage and release of mechanical waves without energy loss

Coating developed by Stanford researchers brings lithium metal battery closer to reality

Physicists' study demonstrates silicon's energy-harvesting power

ENERGY TECH
Sparks fly as Germany's climate plan hits rural landscapes

Government vows action as German wind industry flags

Angry residents send German wind industry spinning

Colombia's biggest wind power portfolio purchased by AES Colombia

ENERGY TECH
The long road to clean energy

Solar panels, vegan diets, no flights: meet America's climate revolutionaries

Speed bumps on German road to fight climate change

Since cooling demand is primarily driven by the sun, could it also be powered by the sun?

ENERGY TECH
Russia to help Uganda develop nuclear energy

Japan's new environment minister wants to scrap nuclear power

Russia's world-first floating nuclear plant arrives in port

Four candidates running to lead UN nuclear watchdog

ENERGY TECH
Plant research could benefit wastewater treatment, biofuels and antibiotics

Fe metabolic engineering method produces butanetriol sustainably from biomass

Rice reactor turns greenhouse gas into pure liquid fuel

Methane-producing microorganism makes a meal of iron

ENERGY TECH
US confident it will determine who behind Saudi attacks

US will 'defend' international order being 'undermined by Iran': Pentagon chief

UAE follows Saudi in joining US-led Gulf flotilla

Attack on Saudi Arabia came from Iran: US official

ENERGY TECH
Brazil FM says 'climatism' a bid to restrict sovereignty

As climate debate heats up, Canada environment minister gets security detail

World must adapt to 'inevitable' climate change, warns report

Democrats put climate crisis at heart of 2020 race









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.