Harnessing geometric frustration to tune batteries for greater power by Staff Writers Kent UK (SPX) May 15, 2017
A new generation of higher-powered batteries for phones and cameras could result from ground-breaking research led by scientists at the University of Kent. Researchers from the University's School of Physical Sciences (SPS), working with scientists from other European institutions, formulated a recipe to increase the rate at which a solid material - an artificial mineral - can conduct charge. The team found that a phenomenon known as geometric frustration can be used in this process to increase the charge transport rate in the solid material in a way that is comparable with heating that material. Making use of this phenomenon, the team was able to 'tune' materials to be used in future batteries and fuel cells to speed up ionic conductivity. Lead researcher Dr Dean Sayle and his team in SPS found that geometric frustration broke up the regimented formation of atoms in the material, leading to a more disordered pattern. This disordered pattern allowed the charge to pass through the material at a much higher rate. Dr Sayle said: 'Disorder can be created by geometric frustration which might be understood as randomly giving two kinds of differently sized umbrellas to a regimented parade of people and telling them to put them up and come as close together as the size of the umbrellas allow. 'Naturally, this will lead to a destruction of the former formation towards a disordered formation exhibiting a large number of gaps. Similarly, we used geometric frustration to make the atoms disordered by mixing two differently sized atoms together which increased charge transport by 100,000'. As well as more powerful batteries, the new technique may lead to the development of new energy materials with zero- emissions. Geometric Frustration-Induced Disorder a Recipe for High Ionic Conductivity?
Washington DC (SPX) May 11, 2017 Triboelectric nanogenerators (TENGs) are small devices that convert movement into electricity, and might just be what bring us into an era of energy-harvesting clothes and implants. But could TENGs, even theoretically, give us wearable electronics powered solely by the wearer's day-to-day body motion? The short answer is yes. New research from Samsung Advanced Institute of Technology (SAIT ... read more Related Links University of Kent Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |