|
. | . |
|
by Staff Writers Dallas TX (SPX) Mar 20, 2014
Imagine powering your cell phone by simply walking around your office or rubbing it with the palm of your hand. Rather than plugging it into the wall, you become the power source. Researchers at the 247th National Meeting and Exposition of the American Chemical Society (ACS), the world's largest scientific society, presented these commercial possibilities and a unique vision for green energy. Please go here to see a video of the team's work. The meeting, attended by thousands of scientists, features more than 10,000 reports on new advances in science and other topics. It is being held at the Dallas Convention Center and area hotels through Thursday. Zhong Lin Wang, Ph.D., and his team, including graduate student Long Lin who presented the work, have set out to transform the way we look at mechanical energy. Conventional energy sources have so far relied on century-old science that requires scattered, costly power plants and a grid to distribute electricity far and wide. "Today, coal, natural gas and nuclear power plants all use turbine-engine driven, electromagnetic-induction generators," Wang explained. "For a hundred years, this has been the only way to convert mechanical energy into electricity." But a couple of years ago, Wang's team at the Georgia Institute of Technology was working on a miniature generator based on an energy phenomenon called the piezoelectric effect, which is electricity resulting from pressure. But to their surprise, it produced more power than expected. They investigated what caused the spike and discovered that two polymer surfaces in the device had rubbed together, producing what's called a triboelectric effect - essentially what most of us know as static electricity. Building on that fortuitous discovery, Wang then developed the first triboelectric nanogenerator, or "TENG." He paired two sheets of different materials together - one donates electrons, and the other accepts them. When the sheets touch, electrons flow from one to the other. When the sheets are separated, a voltage develops between them. Since his lab's first publication on TENG in 2012, they have since boosted the power output density by a factor of 100,000, with the output power density reaching 300 Watts per square meter. Now with one stomp of his foot, Wang can light up a sheet with a thousand LED bulbs. His group has incorporated TENG into shoe insoles, whistles, foot pedals, floor mats, backpacks and ocean buoys for a variety of potential applications. These gadgets harness the power of everyday motion from the minute (think vibrations, rubbing, stepping) to the global and endless (waves). These movements produce mechanical energy that has been around us all along, but scientists didn't know how to convert it directly to usable power in a sustainable way until now. The key to the huge leap in output and future improvements is the chemistry. "The amount of charge transferred depends on surface properties," Wang explained. "Making patterns of nanomaterials on the polymer films' surfaces increases the contact area between the sheets and can make a 1,000-fold difference in the power generated." With those improvements, Wang said his group is now working on commercializing products to recharge cell phones and other mobile devices using TENG. Down the road, he envisions these nanogenerators can make a far bigger impact on a much larger scale. Researchers could use the technology to tap into the endless energy of ocean waves, rain drops and the wind all around us - with tiny generators rather than towering turbines - to help feed the world's ever-growing energy demand, he said.
Related Links American Chemical Society Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |