|
. | . |
|
by Staff Writers Heidelberg, Germany (SPX) Apr 27, 2014
Theoretical physicists are currently exploring the dynamics of a very unusual kind of device called a SQUID. This Superconducting Quantum Interference Device is a highly sensitive magnetometer used to measure extremely subtle magnetic fields. It is made of two thin regions of insulating material that separate two superconductors - referred to as Josephson junctions - placed in parallel into a ring of superconducting material. In a study published in EPJ B, US scientists have focused on finding an analytical approximation to the theoretical equations that govern the dynamics of an array of SQUIDs. This work was performed by Susan Berggren from the US Navy research lab, SPAWAR Systems Center Pacific, in San Diego, CA, USA and Antonio Palacios of San Diego State University. Its applications are mainly in the military sector, including SQUID array-based low-noise amplifiers and antennas. Simulating the dynamics of large arrays of SQUIDs costs a great deal of time, computing power and energy. Instead the authors employed an analytical approximation technique known as a perturbation analysis to reduce the computation time to practically zero. This involves selecting small system parameters as perturbation parameters, and applying them to the array of SQUIDs to create a solution, which helps represent the dynamics of such arrays. In this study, the authors tested two different approximations. They compared the complete analytical solution for the two approaches using the model equation forms traditionally used for the numerical simulations, then plotted both solutions to determine the effects of the approximation errors on the average voltage versus magnetic field response. In a last step, they applied the most precise approximation to a series coupled array of SQUIDs. The resulting model of the average voltage versus magnetic field response helped them evaluate the sensitivity of such magnetometers, while also shaping future applications. Reference: S. Berggren and A. Palacios (2014), Analytical Approximations to the Dynamics of an Array of Coupled DC SQUIDs, European Physical Journal B, DOI 10.1140/epjb/e2014-50065-9
Related Links Springer Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |