. Energy News .




.
ENERGY TECH
Graphene electronics moves into a third dimension
by Staff Writers
Manchester, UK (SPX) Feb 08, 2012

File image.

In a paper published this week in Science, a Manchester team lead by Nobel laureates Professor Andre Geim and Professor Konstantin Novoselov has literally opened a third dimension in graphene research. Their research shows a transistor that may prove the missing link for graphene to become the next silicon.

Graphene - one atomic plane of carbon - is a remarkable material with endless unique properties, from electronic to chemical and from optical to mechanical.

One of many potential applications of graphene is its use as the basic material for computer chips instead of silicon. This potential has alerted the attention of major chip manufactures, including IBM, Samsung, Texas Instruments and Intel. Individual transistors with very high frequencies (up to 300 GHz) have already been demonstrated by several groups worldwide.

Unfortunately, those transistors cannot be packed densely in a computer chip because they leak too much current, even in the most insulating state of graphene. This electric current would cause chips to melt within a fraction of a second.

This problem has been around since 2004 when the Manchester researchers reported their Nobel-winning graphene findings and, despite a huge worldwide effort to solve it since then, no real solution has so far been offered.

The University of Manchester scientists now suggest using graphene not laterally (in plane) - as all the previous studies did - but in the vertical direction. They used graphene as an electrode from which electrons tunnelled through a dielectric into another metal. This is called a tunnelling diode.

Then they exploited a truly unique feature of graphene - that an external voltage can strongly change the energy of tunnelling electrons. As a result they got a new type of a device - vertical field-effect tunnelling transistor in which graphene is a critical ingredient.

Dr Leonid Ponomarenko, who spearheaded the experimental effort, said: "We have proved a conceptually new approach to graphene electronics. Our transistors already work pretty well. I believe they can be improved much further, scaled down to nanometre sizes and work at sub-THz frequencies."

"It is a new vista for graphene research and chances for graphene-based electronics never looked better than they are now", adds Professor Novoselov.

Graphene alone would not be enough to make the breakthrough. Fortunately, there are many other materials, which are only one atom or one molecule thick, and they were used for help.

The Manchester team made the transistors by combining graphene together with atomic planes of boron nitride and molybdenum disulfide. The transistors were assembled layer by layer in a desired sequence, like a layer cake but on an atomic scale.

Such layer-cake superstructures do not exist in nature. It is an entirely new concept introduced in the report by the Manchester researchers. The atomic-scale assembly offers many new degrees of functionality, without some of which the tunnelling transistor would be impossible.

"The demonstrated transistor is important but the concept of atomic layer assembly is probably even more important," explains Professor Geim. Professor Novoselov added: "Tunnelling transistor is just one example of the inexhaustible collection of layered structures and novel devices which can now be created by such assembly.

"It really offers endless opportunities both for fundamental physics and for applications. Other possible examples include light emission diodes, photovoltaic devices, and so on."

Related Links
University of Manchester
Powering The World in the 21st Century at Energy-Daily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
Materials developed for first optical fibers with high-speed electronic function
University Park PA (SPX) Feb 09, 2012
For the first time, a group of chemists, physicists, and engineers has developed crystalline materials that allow an optical fiber to have integrated, high-speed electronic functions. The potential applications of such optical fibers include improved telecommunications and other hybrid optical and electronic technologies, improved laser technology, and more-accurate remote-sensing devices. ... read more


ENERGY TECH
Germany forced to tap into electricity reserves

China to face electricity shortages?

ENERGY TECH
Israel boosts naval forces in gas fields

WWF urges banks to block Sakhalin oil plan and save whales

Graphene electronics moves into a third dimension

India should scale up green technologies

ENERGY TECH
New EU wind power capacity near level

ENERGY TECH
Chadbourne Closes More Than 20 Billion in Project Finance Deals

Alta Devices Discloses Record Solar Module Efficiency

Mid-Atlantic SEIA and National SEIA Formalize Partnership to Grow Region's Solar Market

Lawsuit Filed To Halt Riverside County Sun Tax

ENERGY TECH
US approves first nuclear plant in decades

China authorities demand nuclear plant halt

Sarkozy vows to keep oldest nuclear plant running

US urges Bulgaria to diversify energy supply

ENERGY TECH
Enerkem and GreenField Ethanol Announce Quebec's First Waste-to-Biofuels Production Facility

Pennsylvania State Fire Academy Offers Course in Ethanol Response

Plant power: The ultimate way to 'go green'?

America's Economic Future and Clean Energy Potential

ENERGY TECH
China's new rockets expected to debut within five years

China announces new launch rockets

ENERGY TECH
2C warming goal now 'optimistic' - French scientists

Mauritania goes hungry amid Sahel food crisis: WFP

Political Leaders Play Key Role In How Worried Americans Are By Climate Change


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement