Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Fusion, anyone?
by Staff Writers
Washington DC (SPX) Sep 25, 2013


This image shows the preamplifiers of the National Ignition Facility. The unified lasers deliver 1.8 megajoules of energy and 500 terawatts of power -- 1,000 times more than the United States uses at any one moment. Credit: Damien Jemison/LLNL.

The dream of igniting a self-sustained fusion reaction with high yields of energy, a feat likened to creating a miniature star on Earth, is getting closer to becoming reality, according the authors of a new review article in the journal Physics of Plasmas.

Researchers at the National Ignition Facility (NIF) engaged in a collaborative project led by the Department of Energy's Lawrence Livermore National Laboratory, report that while there is at least one significant obstacle to overcome before achieving the highly stable, precisely directed implosion required for ignition, they have met many of the demanding challenges leading up to that goal since experiments began in 2010.

The project is a multi-institutional effort including partners from the University of Rochester's Laboratory for Laser Energetics, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory, and the Massachusetts Institute of Technology.

To reach ignition (defined as the point at which the fusion reaction produces more energy than is needed to initiate it), the NIF focuses 192 laser beams simultaneously in billionth-of-a-second pulses inside a cryogenically cooled hohlraum (from the German word for "hollow room"), a hollow cylinder the size of a pencil eraser.

Within the hohlraum is a ball-bearing-size capsule containing two hydrogen isotopes, deuterium and tritium (D-T). The unified lasers deliver 1.8 megajoules of energy and 500 terawatts of power-1,000 times more than the United States uses at any one moment-to the hohlraum creating an "X-ray oven" which implodes the D-T capsule to temperatures and pressures similar to those found at the center of the sun.

"What we want to do is use the X-rays to blast away the outer layer of the capsule in a very controlled manner, so that the D-T pellet is compressed to just the right conditions to initiate the fusion reaction," explained John Edwards, NIF associate director for inertial confinement fusion and high-energy-density science.

"In our new review article, we report that the NIF has met many of the requirements believed necessary to achieve ignition-sufficient X-ray intensity in the hohlraum, accurate energy delivery to the target and desired levels of compression-but that at least one major hurdle remains to be overcome, the premature breaking apart of the capsule."

In the article, Edwards and his colleagues discuss how they are using diagnostic tools developed at NIF to determine likely causes for the problem. "In some ignition tests, we measured the scattering of neutrons released and found different strength signals at different spots around the D-T capsule," Edwards said.

"This indicates that the shell's surface is not uniformly smooth and that in some places, it's thinner and weaker than in others. In other tests, the spectrum of X-rays emitted indicated that the D-T fuel and capsule were mixing too much-the results of hydrodynamic instability-and that can quench the ignition process."

Edwards said that the team is concentrating its efforts on NIF to define the exact nature of the instability and use the knowledge gained to design an improved, sturdier capsule. Achieving that milestone, he said, should clear the path for further advances toward laboratory ignition.

The article, "Progress toward ignition on the National Ignition Facility" by M.J. Edwards et al. appears in the journal Physics of Plasmas.

.


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Support Fusion Propulsion Research
Huntsville AL (SPX) Jul 31, 2013
University of Alabama in Huntsville is conducting pulsed fusion propulsion research with the Charger-1 device. The Charger-1 is a ~500 kJ pulsed power facility capable of 2 MA discharges at 3 TW of instantaneous power. For comparison, the electrical power in the entire global grid is 15 TW. The Charger-1 will be used to research pertinent technologies for pulsed z-pinch fusion propulsion. In z-p ... read more


ENERGY TECH
Myanmar's energy sector boosted by World Bank investment

ASEAN region has potential for 70 percent green energy

Clean energy least costly to power America's electricity needs

Gemalto, others join to expand S. America smart metering

ENERGY TECH
China wins $2 billion oil deal in Uganda

Fusion, anyone?

Greenpeace's 'Arctic 30': a diverse group of activists

Lawmaker charged over British fracking site protest

ENERGY TECH
Installation of the first AREVA turbines at Trianel Windpark Borkum and Global Tech 1

Trump's suit to halt wind farm project to be heard in November

Ireland connects first community-owned wind farm to grid

Moventas significantly expands wind footprint

ENERGY TECH
Heilind showcasing solar products at NECA

Standard Solar and Solar Grid Storage Collaborate to Complete Pioneering Commercial Solar Microgrid

Trina Solar powers 11MWp Hazel Capital project for Oskomera

Solar Maid adds Several Island Locations

ENERGY TECH
Anti-radiation fence at Fukushima has hole: TEPCO

Fukushima operator seeks reactor restart

Iran to take control of Russian-built reactor 'Monday'

Iran assumes control of Bushehr nuclear plant

ENERGY TECH
First look at complete sorghum genome may usher in new uses for food and fuel

First steps towards achieving better and cheaper biodiesel

Want wine with those biofuels? Why not, researchers ask

Duckweed as a cost-competitive raw material for biofuel

ENERGY TECH
Chinese VP stresses peaceful use of space

China's space station to open for foreign peers

Last Days for Tiangong

China civilian technology satellites put into use

ENERGY TECH
Northern moths may fare better under climate warming than expected

Wind and rain belts to shift north as planet warms

Climate change nothing new in Oz

Temperatures to rise 0.3-4.8 C this century: UN panel




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement