Energy News  
ENERGY TECH
Fully identified: The pathway of protons
by Staff Writers
Bochum, Germany (SPX) Nov 12, 2018

Martin Winkler, Jifu Duan and Thomas Happe (from left) are exploring the path protons take in enzymes. In the virtual world they can go the way themselves.

The question how certain algal enzymes accomplish the high proton transfer rate for hydrogen production had in the past been subject to speculation. Dr. Martin Winkler, Dr. Jifu Duan, Professor Eckhard Hofmann and Professor Thomas Happe from Ruhr-Universitat Bochum (RUB), together with colleagues from Freie Universitat Berlin, traced the pathway of protons all the way into the active center of [FeFe]-hydrogenases.

Their findings might enable scientists to create stable chemical reproductions of such efficient, yet fragile biocatalysts. The researchers published their report in the journal Nature Communications from 9 November 2018.

In their catalytic center, hydrogenases manufacture molecular hydrogen (H2) from two protons and two electrons. They extract the protons required for this process from the surrounding water and transfer them - via a transport chain - into their catalytic core.

The exact proton pathway through the hydrogenase had as yet not been understood. "This transfer pathway is a jigsaw piece, crucial for understanding the interplay of cofactor and protein which is the reason why biocatalysts are so much more efficient than hydrogen-producing chemical complexes," explains Dr. Martin Winkler, one of the authors of this study from the Photobiotechnology research group at RUB.

Structures of enzyme variants decoded
In order to figure out which of the hydrogenase building blocks are involved in proton transfer, the researchers substituted them individually. They replaced each either by an amino acid with a similar function or by a dysfunctional amino acid.

Thus, 22 variants of two different hydrogenases were created. Subsequently, the researchers compared those variants with regard to different aspects, including their spectroscopic properties and their enzyme activity. "The molecular structures of twelve protein variants, which were solved using X-ray structure analysis, proved particularly informative," says Winkler.

Amino acids with no function shut down hydrogenases
Depending on where and how the researchers had changed the hydrogenase, hydrogen production became less efficient or stopped altogether. "Thus, we ascertained why some variants are severely impaired in terms of enzyme activity and why others are hardly impaired at all - against all expectations," says Martin Winkler.

The closer to the catalytic centre the replaced amino acids were located, the less able the hydrogenase was to compensate for these modifications. If building blocks with no function were embedded in sensitive locations, hydrogen production was shut down.

"The thus generated state resembles an oversaturation due to proton stress where protons as well as hydrogen are simultaneously introduced into the hydrogenase," elaborates Martin Winkler. "In the course of our project, we were for the first time able to stabilise and analyse this highly transient state that we had already encountered in experiments."

Valuable baseline information
This study has made it possible to assign the functions of individual amino acids to the proton transfer pathway for the enzyme group of [FeFe] hydrogenases. "Moreover, it provides valuable information on the molecular mechanism of proton transfer by redox-active proteins and the structural requirements thereof," concludes Thomas Happe.

Research Report: Jifu Duan, Moritz Senger, Julian Esselborn, Vera Engelbrecht, Florian Wittkamp, Ulf-Peter Apfel, Eckhard Hofmann, Sven T. Stripp, Thomas Happe, Martin Winkler: Crystallographic and spectroscopic assignment of the proton transfer pathway in [FeFe]-hydrogenases, in: Nature Communications, 2018, DOI: 10.1038/s41467-018-07140-x


Related Links
Ruhr-University Bochum
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
New quantum criticality discovered in superconductivity
Ames IA (SPX) Nov 05, 2018
Using solid state nuclear magnetic resonance (ssNMR) techniques, scientists at the U.S. Department of Energy's Ames Laboratory discovered a new quantum criticality in a superconducting material, leading to a greater understanding of the link between magnetism and unconventional superconductivity. Most iron-arsenide superconductors display both magnetic and structural (or nematic) transitions, making it difficult to understand the role they play in superconducting states. But a compound of calcium, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

Spain's Ibedrola sells hydro, gas-powered assets in U.K. for $929M

How will climate change stress the power grid

ENERGY TECH
Extending the life of low-cost, compact, lightweight batteries

Inside job: A new technique to cool a fusion reactor

Shortening the rare-earth supply chain via recycling

Taming plasmas: Improving fusion using microwaves

ENERGY TECH
Denmark-based Orsted adds to its U.S. wind energy assets

Making wind farms more efficient

DNV GL successfully completed technical due diligence for 25 MW Windfloat Atlantic floating wind project

Wind farm 'predator' effect hits ecosystems: study

ENERGY TECH
Harvesting renewable energy from the sun and outer space at the same time

Nantenergy acquires Sharp's energy systems and services business

Recurrent Energy signs build-transfer agreement with Entergy on 100 MWac Mississippi solar project

Powered by windows: enhanced power factor in transparent thermoelectric nanowire materials

ENERGY TECH
Framatome marks opening of nuclear parts center at expanded solutions complex

Toshiba slashes 7,000 jobs, pulls out of British nuke plant

Levitating particles could lift nuclear detective work

Framatome develops and implements high performance repair at Savannah River waste storage site

ENERGY TECH
New system opens the door to transforming CO2 into industrial fuels

A bionic mushroom that generates electricity

Graphene takes a step towards renewable fuel

Bionic mushrooms fuse nanotech, bacteria and fungi

ENERGY TECH
Colombia's Duque calls for action against Venezuelan 'dictatorship'

Trump calls court block on Keystone oil pipeline 'a disgrace'

Crude oil futures extend decline as oversupply concerns remain high

Saudi Aramco, Chinese researchers to pursue ultra-low emission fuels

ENERGY TECH
Newly-elected Native American vows climate change fight

What happened in the past when the climate changed?

Perilous times for Australia wildlife amid severe drought

Perilous times for Australia wildlife amid severe drought









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.