Energy News  
ENERGY TECH
Focusing on the negative is good when it comes to batteries
by Staff Writers
Pasadena CA (SPX) Dec 07, 2018

Researchers discovered a new molecule, BTFE, that helps fluoride dissolve at room temperature for building higher energy batteries.

Imagine not having to charge your phone or laptop for weeks. That is the dream of researchers looking into alternative batteries that go beyond the current lithium-ion versions popular today. Now, in a new study appearing in the journal Science, chemists at several institutions, including Caltech and the Jet Propulsion Laboratory, which is managed by Caltech for NASA, as well as the Honda Research Institute and Lawrence Berkeley National Laboratory, have hit on a new way of making rechargeable batteries based on fluoride, the negatively charged form, or anion, of the element fluorine.

"Fluoride batteries can have a higher energy density, which means that they may last longer - up to eight times longer than batteries in use today," says study co-author Robert Grubbs, Caltech's Victor and Elizabeth Atkins Professor of Chemistry and a winner of the 2005 Nobel Prize in Chemistry. "But fluoride can be challenging to work with, in particular because it's so corrosive and reactive."

In the 1970s, researchers attempted to create rechargeable fluoride batteries using solid components, but solid-state batteries work only at high temperatures, making them impractical for everyday use. In the new study, the authors report at last figuring out how to make the fluoride batteries work using liquid components - and liquid batteries easily work at room temperature.

"We are still in the early stages of development, but this is the first rechargeable fluoride battery that works at room temperature," says Simon Jones, a chemist at JPL and corresponding author of the new study.

Batteries drive electrical currents by shuttling charged atoms - or ions - between a positive and negative electrode. This shuttling process proceeds more easily at room temperature when liquids are involved. In the case of lithium-ion batteries, lithium is shuttled between the electrodes with the help of a liquid solution, or electrolyte.

"Recharging a battery is like pushing a ball up a hill and then letting it roll back again, over and over," says co-author Thomas Miller, professor of chemistry at Caltech. "You go back and forth between storing the energy and using it."

While lithium ions are positive (called cations), the fluoride ions used in the new study bear a negative charge (and are called anions). There are both challenges and advantages to working with anions in batteries.

"For a battery that lasts longer, you need to move a greater number of charges. Moving multiply charged metal cations is difficult, but a similar result can be achieved by moving several singly charged anions, which travel with comparative ease," says Jones, who does research at JPL on power sources needed for spacecraft. "The challenges with this scheme are making the system work at useable voltages. In this new study, we demonstrate that anions are indeed worthy of attention in battery science since we show that fluoride can work at high enough voltages."

The key to making the fluoride batteries work in a liquid rather than a solid state turned out to be an electrolyte liquid called bis(2,2,2-trifluoroethyl)ether, or BTFE. This solvent is what helps keep the fluoride ion stable so that it can shuttle electrons back and forth in the battery.

Jones says his intern at the time, Victoria Davis, who now studies at the University of North Carolina, Chapel Hill, was the first to think of trying BTFE. While Jones did not have much hope it would succeed, the team decided to try it anyway and were surprised it worked so well.

At that point, Jones turned to Miller for help in understanding why the solution worked. Miller and his group ran computer simulations of the reaction and figured out which aspects of BTFE were stabilizing the fluoride. From there, the team was able to tweak the BTFE solution, modifying it with additives to improve its performance and stability.

"We're unlocking a new way of making longer-lasting batteries," says Jones. "Fluoride is making a comeback in batteries."

Research Report: "Room Temperature Cycling of Metal Fluoride Electrodes: Liquid Electrolytes for High Energy Fluoride-Ion Cells"

Related Links
California Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
ABB microgrid to support Portuguese island's energy transition
Madeira, Portugal (SPX) Dec 06, 2018
ABB is supplying an ABB Ability enabled microgrid and energy storage system to Empresa de Electricidade da Madeira (EEM), a Madeira-based utility to harness solar and wind energy. The modular ABB Ability PowerStore microgrid solution and Microgrid Plus automation system will enable EEM to significantly increase the island's adoption of solar and wind power and raise the share of renewables in the energy mix from 15 to 30 percent. Furthermore, ABB's software, automation and control technologi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Making the world hotter: India's expected AC explosion

EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

Spain's Ibedrola sells hydro, gas-powered assets in U.K. for $929M

ENERGY TECH
Switching to a home battery won't help save the world from climate change

Focusing on the negative is good when it comes to batteries

Yin and yang: Opposites in nature, fluoride and lithium, compete for higher energy batteries

Scientists enter unexplored territory in superconductivity search

ENERGY TECH
Widespread decrease in wind energy resources found over the Northern Hemisphere

Wind power vulnerable to climate change in India

Coordinated development could help wind farms be better neighbors

Roadmap to accelerate offshore wind industry in the United States

ENERGY TECH
Lithuanian scientists' approach to perovskite solar cells - cheaper production and high efficiency

DNV GL's on-site solar lab brings advanced and reliable PV testing to the field in India

Fighting smog supports solar power

A 3D imaging technique unlocks properties of perovskite crystals

ENERGY TECH
GE Hitachi Nuclear Energy announces intent to acquire specialized expertise

Uranium in mine dust could dissolve in human lungs

Framatome signs MoU with Bruce Power for safety-related Life-Extension Program updates

Bulgaria leader opposed to increased carbon-cutting targets

ENERGY TECH
More bioplastics do not necessarily contribute to better outcomes

WSU researchers reverse engineer way pine trees produce green chemicals worth billions

Agricultural waste drives us closer to greener transport

In Mauritius, sugar cane means money, renewable energy

ENERGY TECH
Crude oil price lower as U.S. exports rise, China-related tensions linger

Eni to develop newly found 185M barrels of light oil offshore Angola

OPEC maintains 2019 crude oil demand forecast

Mexico delays bidding for some Pemex partners, cancels two other bids

ENERGY TECH
Saudi, US snub of climate report unsettles UN talks

Trump attacks Paris climate agreement, cites France protests

France says protests no excuse to curb climate battle

New Zealand military braces for climate change battle









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.