Fiery sighting: A new physics of eruptions that damage fusion experiments by Staff Writers Plainsboro NJ (SPX) Jan 17, 2019
Sudden bursts of heat that can damage the inner walls of tokamak fusion experiments are a hurdle that operators of the facilities must overcome. Such bursts, called "edge localized modes (ELMs)," occur in doughnut-shaped tokamak devices that house the hot, charged plasma that is used to replicate on Earth the power that drives the sun and other stars. Now researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have directly observed a possible and previously unknown process that can trigger damaging ELMs. Working together, physicists Ahmed Diallo, an experimentalist, and Julien Dominski, a theorist, pieced together data from the DIII-D National Fusion Facility that General Atomics operates for the DOE in San Diego, to uncover a trigger for a particular type of ELM that does not fit into present models of ELM plasma destabilization. Their findings could shed light on the variety of mechanisms leading to the onset of ELMs and could broaden the portfolio of ELM suppression tools. Understanding ELM physics is crucial to developing fusion facilities that can fuse light elements in the form of plasma - the state of matter composed of free electrons and atomic nuclei - to produce a virtually inexhaustible supply of energy to generate electricity.
Puzzling data The data showed the eruption of ELMs following periods of unusual quiescence. "These were special cases that didn't follow a standard model," said Diallo. "We started digging into this together," Dominski said. "It was a most interesting collaboration." In roughly six months of joint research, the physicists uncovered previously unseen correlations of fluctuations in the DIII-D experiments. These correlations revealed the formation of two modes - or waves - at the edge of the plasma that coupled together to generate a third mode. The newcomer then moved toward the wall of the tokamak - created a radial distortion in technical terms - that triggered bursts of low-frequency ELMs. The ELMs were a type also seen on the Joint European Torus (JET) in the United Kingdom, the ASDEX Upgrade in Germany and other fusion devices following periods of quiescence. In principle, the results could also apply to systems such as solar flares and geomagnetic storms that are suddenly unleashed, according to the paper.
Opening a door
Scientists discover a process that stabilizes fusion plasmas Plainsboro NJ (SPX) Jan 09, 2019 Scientists seeking to bring the fusion reaction that powers the sun and stars to Earth must keep the superhot plasma free from disruptions. Now researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered a process that can help to control the disruptions thought to be most dangerous. Replicating fusion, which releases boundless energy by fusing atomic nuclei in the state of matter known as plasma, could produce clean and virtually limitless power ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |