. Energy News .




.
ENERGY TECH
Dark plasmons transmit energy
by Staff Writers
Houston TX (SPX) Feb 14, 2012

A scanning electron microscope image, left, shows a 15-micron line of 50-nanometer spherical gold nanoparticles. At right is a fluorescence image of the same chain, coated with a thin film of Cardiogreen dye using 785 nm laser excitation. (Credit Link Lab/Rice University).

Microscopic channels of gold nanoparticles have the ability to transmit electromagnetic energy that starts as light and propagates via "dark plasmons," according to researchers at Rice University.

A new paper in the American Chemical Society journal Nano Letters shows how even disordered collections of nanoparticles in arrays as thin as 150 nanometers can be turned into waveguides and transmit signals an order of magnitude better than previous experiments were able to achieve. Efficient energy transfer on the micrometer scale may greatly improve optoelectronic devices.

The Rice lab of Stephan Link, an assistant professor of chemistry and electrical and computer engineering, has developed a way to "print" fine lines of gold nanoparticles on glass. These lines of nanoparticles can transmit a signal from one nanoparticle to the next over many microns, much farther than previous attempts and roughly equivalent to results seen using gold nanowires.

Complex waveguide geometries are far easier to manufacture with nanoparticle chains, Link said. He and his team used an electron beam to cut tiny channels into a polymer on a glass substrate to give the nanoparticle lines their shape. The gold nanoparticles were deposited into the channels via capillary forces. When the rest of the polymer and stray nanoparticles were washed away, the lines remained, with the particles only a few nanometers apart.

Plasmons are waves of electrons that move across the surface of a metal like water in a pond when disturbed. The disturbance can be caused by an outside electromagnetic source, such as light. Adjacent nanoparticles couple with each other where their electromagnetic fields interact and allow a signal to pass from one to the next.

Link said dark plasmons may be defined as those that have no net dipole moment, which makes them unable to couple to light. "But these modes are not totally dark, especially in the presence of disorder," he said. "Even for the subradiant modes, there is a small dipole oscillation.

"Our argument is that if you can couple to these subradiant modes, the scattering loss is smaller and plasmon propagation is sustained over longer distances," Link said. "Therefore, we enhance energy transport over much longer distances than what has been done before with metal-particle chains."

To see how far, Link and his team coated the 15-micron-long lines with a fluorescent dye and used a photobleaching method developed in his lab to measure how far the plasmons, excited by a laser at one end, propagate. "The damping of the plasmon propagation is exponential," he said. "At four microns, you have a third of the initial intensity value.

"While this propagation distance is short compared to traditional optical waveguides, in miniaturized circuits one only needs to cover small length scales. It might be possible to eventually apply an amplifier to the system that would lengthen the propagation distance," Link said. "In terms of what people thought was possible with nanoparticle chains, what we've done is already a significant improvement."

Link said silver nanowires have been shown to carry a plasmon wave better than gold, as far as 15 microns, about a sixth the width of a human hair. "We know that if we try silver nanoparticles, we may propagate a lot longer and hopefully do that in more complex structures," he said. "We may be able to use these nanoparticle waveguides to link to other components such as nanowires in configurations that would not be possible otherwise."

Graduate student David Solis Jr. is the lead author of the paper. Co-authors are graduate students Britain Willingham, Liane Slaughter, Jana Olson and Pattanawit Swanglap, junior Scott Nauert and postdoctoral research associates Aniruddha Paul and Wei-Shun Chang, all of Rice. Read the abstract here.

Related Links
Rice University
Powering The World in the 21st Century at Energy-Daily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
Innovation promises expanded roles for microsensors
West Lafayette IN (SPX) Feb 14, 2012
Researchers have learned how to improve the performance of sensors that use tiny vibrating microcantilevers to detect chemical and biological agents for applications from national security to food processing. The microcantilevers - slivers of silicon shaped like small diving boards - vibrate at their natural, or "resonant," frequency. Analyzing the frequency change when a particle lands on ... read more


ENERGY TECH
Colombia energy oversupply bad for prices

Hydropower, Geothermal and Biomass Power Executives Call for Extension of the Production Tax Credit

NEMA Says DOE Proposal Will Boost Energy Savings and Maintain Competitive Industry

Snow-hit Romania could halt electricity exports

ENERGY TECH
Iraq aims to more than double northern oil output

Heat recovery and energy efficiency, improves profitability and reduces CO footprint

Dark plasmons transmit energy

Walker's World: The Falklands again

ENERGY TECH
Japan firms plan wind farm near Fukushima: report

New EU wind power capacity near level

ENERGY TECH
Solar panels could double as a roof

Oldest Family Mushroom Farm in the US Goes Solar

Powell Energy and Solar Completes Complex Install for N.J. Church

Industry welcomes renewed commitment to Solar Flagships program

ENERGY TECH
Remove atomic scientist, expand expert panel: Kudankulam activists

Taiwan to forge ahead with nuclear power?

Russian nuclear scientists in Kudankulam to be sent elsewhere: Envoy

Poland sticking to 2020 target for first atomic plant

ENERGY TECH
Grass to gas: UGA researchers' genome map speeds biofuel development

Study: Mandating ethanol wrong solution

Sustainable land use strategies to support bioenergy

Fuel from market waste

ENERGY TECH
Space-tracking ship Yuanwang VI concludes trip

China's new rockets expected to debut within five years

ENERGY TECH
More aid needed to divert disaster in Sahel: Red Cross

Early farmers may have impacted climate

Libya fallout fans Sahel hunger pangs as crisis looms

2C warming goal now 'optimistic' - French scientists


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement