Energy News  
ENERGY TECH
Converting atmospheric carbon dioxide into batteries
by Staff Writers
Nashville TN (SPX) Mar 10, 2016


The Solar Thermal Electrochemical Process (STEP) converts atmospheric carbon dioxide into carbon nanotubes that can be used in advanced batteries. Image courtesy Julie Turner, Vanderbilt University. For a larger version of this image please go here.

An interdisciplinary team of scientists has worked out a way to make electric vehicles that are not only carbon neutral, but carbon negative, capable of actually reducing the amount of atmospheric carbon dioxide as they operate.

They have done so by demonstrating how the graphite electrodes used in the lithium-ion batteries that power electric automobiles can be replaced with carbon material recovered from the atmosphere.

The recipe for converting carbon dioxide gas into batteries is described in the paper titled "Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes" published in the Mar. 2 issue of the journal ACS Central Science.

The unusual pairing of carbon dioxide conversion and advanced battery technology is the result of a collaboration between the laboratory of Assistant Professor of Mechanical Engineering Cary Pint at Vanderbilt University and Professor of Chemistry Stuart Licht at George Washington University.

The team adapted a solar-powered process that converts carbon dioxide into carbon so that it produces carbon nanotubes and demonstrated that the nanotubes can be incorporated into both lithium-ion batteries like those used in electric vehicles and electronic devices and low-cost sodium-ion batteries under development for large-scale applications, such as the electric grid.

"This approach not only produces better batteries but it also establishes a value for carbon dioxide recovered from the atmosphere that is associated with the end-user battery cost unlike most efforts to reuse CO2 that are aimed at low-valued fuels, like methanol, that cannot justify the cost required to produce them," said Pint.

The project builds upon a solar thermal electrochemical process (STEP) that can create carbon nanofibers from ambient carbon dioxide developed by the Licht group and described in the journal Nano Letters last August. STEP uses solar energy to provide both the electrical and thermal energy necessary to break down carbon dioxide into carbon and oxygen and to produce carbon nanotubes that are stable, flexible, conductive and stronger than steel.

"Our climate change solution is two fold: to transform the greenhouse gas carbon dioxide into valuable products and to provide greenhouse gas emission-free alternatives to today's industrial and transportation fossil fuel processes," said Licht. "In addition to better batteries other applications for the carbon nanotubes include carbon composites for strong, lightweight construction materials, sports equipment and car, truck and airplane bodies."

Joining forces with Pint, whose research interests are focused on using carbon nanomaterials for battery applications, the two laboratories worked together to show that the multi-walled carbon nanotubes produced by the process can serve as the positive electrode in both lithium-ion and sodium-ion batteries.

In lithium-ion batteries, the nanotubes replace the carbon anode used in commercial batteries. The team demonstrated that the carbon nanotubes gave a small boost to the performance, which was amplified when the battery was charged quickly.

In sodium-ion batteries, the researchers found that small defects in the carbon, which can be tuned using STEP, can unlock stable storage performance over 3.5 times above that of sodium-ion batteries with graphite electrodes. Most importantly, both carbon-nanotube batteries were exposed to about 2.5 months of continuous charging and discharging and showed no sign of fatigue.

Depending on the specifications, making one of the two electrodes out of carbon nanotubes means that up to 40 percent of a battery could be made out of recycled CO2, Pint estimated. This does not include the outer protective packaging but he suggested that processes like STEP could eventually produce the packaging as well.

The researchers estimate that with a battery cost of $325 per kWh (the average cost of lithium-ion batteries reported by the Department of Energy in 2013), a kilogram of carbon dioxide has a value of about $18 as a battery material - six times more than when it is converted to methanol - a number that only increases when moving from large batteries used in electric vehicles to the smaller batteries used in electronics.

And unlike methanol, combining batteries with solar cells provides renewable power with zero greenhouse emissions, which is needed to put an end to the current carbon cycle that threatens future global sustainability.

Licht also proposed that the STEP process could be coupled to a natural gas powered electrical generator. The generator would provide electricity, heat and a concentrated source of carbon dioxide that would boost the performance of the STEP process.

At the same time, the oxygen released in the process could be piped back to the generator where it would boost the generator's combustion efficiency to compensate for the amount of electricity that the STEP process consumes. The end result could be a fossil fuel electrical power plant with zero net CO2 emissions.

"Imagine a world where every new electric vehicle or grid-scale battery installation would not only enable us to overcome the environmental sins of our past, but also provide a step toward a sustainable future for our children," said Pint. "Our efforts have shown a path to achieve such a future."

Coauthors of the paper with Licht and Pint include Anna Douglas, graduate student in the interdisciplinary materials science program at Vanderbilt; Rachel Carter, graduate student in mechanical engineering at Vanderbilt; Jiawen Ren, postdoctoral associate in chemistry at George Washington University; and Matthew Lefler, graduate student in chemistry at George Washington University.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Vanderbilt University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Electric Car War Sends Lithium Prices Sky High
London, UK (SPX) Mar 03, 2016
With lithium prices skyrocketing beyond wildest expectations, talk heating up about acquisitions and mergers in this space and a fast-brewing war among electric car rivals, it's no wonder everyone's bullish on this golden commodity that promises to become the ''new gasoline". Moreover, land grabs, rising price predictions, and expectations of a major demand spike are leaping out of the sha ... read more


ENERGY TECH
China emissions goals less ambitious than 2015 cuts: plan

Europe 2030: Energy saving to become 'first fuel'

New model maps energy usage of every building in Boston

The forecast for renewable energy in 2016

ENERGY TECH
OLED displays and solid-state lightings in mass production, coming soon

Creation of Jupiter interior, a step towards room temp superconductivity

Device 'fingerprints' could help protect power grid, other industrial systems

Electric Car War Sends Lithium Prices Sky High

ENERGY TECH
Norway's Statoil makes U.S. wind energy bet

Adwen Chooses Sentient Science For Computational Gearbox Testing

EU boasts of strides in renewable energy

Offshore U.K. to host world's largest wind farm

ENERGY TECH
Abengoa shares soar as creditors said to throw lifeline

Tax credit extensions impact renewable energy deployments

Canada makes low-carbon commitments

Researchers make key improvement in solar cell technology

ENERGY TECH
AREVA Upgrades Reactor Coolant Pumps at Surry Power Station

German states file challenge against Belgian nuclear plants

Closure of France's oldest nuclear plant begins this year

Russia, Kazakhstan may sign nuclear cooperation deal in 2016

ENERGY TECH
Biofuels from algae: A budding technology yet to become viable

Researchers' new advance in quest for second generation biofuels

Improving biorefineries with bubbles

Study: Bubbles boost efficiency of biorefinery systems

ENERGY TECH
Moving in to Tiangong 2

Logistics Rule on Tiangong 2

China to launch second space lab Tiangong-2 in Q3

China's moon lander Chang'e-3 enters 28th lunar day

ENERGY TECH
Researchers work to improve how we predict climate change

Canadian leaders fail to reach agreement on carbon pricing

Canada gets down to climate business

Trudeau seeks climate consensus from Canada's 10 provinces









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.