Catalyst advance could lead to economical fuel cells by Staff Writers Pullman WA (SPX) Aug 31, 2018
Researchers at Washington State University have developed a new way to make low-cost, single-atom catalysts for fuel cells - an advance that could make important clean energy technology more economically viable. Their work is published in the Advanced Energy Materials journal. Hydrogen fuel cells are critical for the clean energy economy as they are more than two times as efficient at creating electricity than polluting combustion engines. Their only waste product is water. However, the high price of the platinum-based catalysts that are used for the chemical reaction in fuel cells significantly hinders their commercialization. Instead of the rare platinum, researchers would like to use nonprecious metals, such as iron or cobalt. But reactions with these abundantly available metals tend to stop working after a short time. "Low-cost catalysts with high activity and stability are critical for the commercialization of the fuel cells." said Qiurong Shi, postdoctoral researcher in the School of Mechanical and Materials Engineering (MME) and a co-first author on the paper. Recently, researchers have developed single-atom catalysts that work as well in the laboratory setting as using precious metals. The researchers have been able to improve the stability and activity of the nonprecious metals by working with them at the nanoscale as single-atom catalysts. In this new work, the WSU research team, led by Yuehe Lin, an MME professor, used iron or cobalt salts and the small molecule glucosamine as precursors in a straightforward high temperature process to create the single-atom catalysts. The process can significantly lower the cost of the catalysts and could be easily scaled up for production. The iron-carbon catalysts they developed were more stable than commercial platinum catalysts. They also maintained good activity and didn't become contaminated, which is often a problem with common metals. "This process has many advantages," said Chengzhou Zhu, a first author on the paper who developed the high temperature process. "It makes large-scale production feasible, and it allows us to increase the number and boost the reactivity of active sites on the catalyst." Lin's group collaborated on the project with Scott Beckman, an MME associate professor at WSU, as well as with researchers at Advanced Photon Source at Argonne National Laboratory and Brookhaven National Laboratory for materials characterization. "The advanced materials characterization user facility at the national laboratories revealed the single-atom sites and active moieties of the catalysts, which led to the better design of the catalysts," said Lin.
Water vapor annealing technique on diamond surfaces for next-generation power devices Kanazawa, Japan (SPX) Aug 29, 2018 Diamonds are adored for their dazzling beauty, often displayed in exquisite jewelry. But, this solid form of carbon is also renowned for its outstanding physical and electronic properties. In Japan, a collaboration between researchers at Kanazawa University's Graduate School of Natural Science and Technology and AIST in Tsukuba, led by Ryo Yoshida, has used water vapor annealing to form hydroxyl-terminated diamond surfaces that are atomically flat. Diamond has many characteristics that make ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |