Energy News  
ENERGY TECH
Candy cane supercapacitor could enable fast charging of mobile phones
by Staff Writers
London UK (SPX) Aug 21, 2017


Candy cane supercapacitor.

Supercapacitors promise recharging of phones and other devices in seconds and minutes as opposed to hours for batteries. But current technologies are not usually flexible, have insufficient capacities, and for many their performance quickly degrades with charging cycles.

Researchers at Queen Mary University of London (QMUL) and the University of Cambridge have found a way to improve all three problems in one stroke.

Their prototyped polymer electrode, which resembles a candy cane usually hung on a Christmas tree, achieves energy storage close to the theoretical limit, but also demonstrates flexibility and resilience to charge/discharge cycling.

The technique could be applied to many types of materials for supercapacitors and enable fast charging of mobile phones, smart clothes and implantable devices. Pseudocapacitance is a property of polymer and composite supercapacitors that allows ions to enter inside the material and thus pack much more charge than carbon ones that mostly store the charge as concentrated ions (in the so-called double layer) near the surface.

The problem with polymer supercapacitors, however, is that the ions necessary for these chemical reactions can only access the top few nanometers below the material surface, leaving the rest of the electrode as dead weight. Growing polymers as nano-structures is one way to increase the amount of accessible material near the surface, but this can be expensive, hard to scale up, and often results in poor mechanical stability.

The researchers, however, have developed a way to interweave nanostructures within a bulk material, thereby achieving the benefits of conventional nanostructuring without using complex synthesis methods or sacrificing material toughness.

Project leader, Stoyan Smoukov, explained: "Our supercapacitors can store a lot of charge very quickly, because the thin active material (the conductive polymer) is always in contact with a second polymer which contains ions, just like the red thin regions of a candy cane are always in close proximity to the white parts. But this is on a much smaller scale.

"This interpenetrating structure enables the material to bend more easily, as well as swell and shrink without cracking, leading to greater longevity. This one method is like killing not just two, but three birds with one stone."

The Smoukov group had previously pioneered a combinatorial route to multifunctionality using interpenetrating polymer networks (IPN) in which each component would have its own function, rather than using trial-and-error chemistry to fit all functions in one molecule.

This time they applied the method to energy storage, specifically supercapacitors, because of the known problem of poor material utilization deep beneath the electrode surface.

This interpenetration technique drastically increases the material's surface area, or more accurately the interfacial area between the different polymer components.

Interpenetration also happens to solve two other major problems in supercapacitors. It brings flexibility and toughness because the interfaces stop growth of any cracks that may form in the material. It also allows the thin regions to swell and shrink repeatedly without developing large stresses, so they are electrochemically resistant and maintain their performance over many charging cycles.

The researchers are currently rationally designing and evaluating a range of materials that can be adapted into the interpenetrating polymer system for even better supercapacitors.

In an upcoming review, accepted for publication in the journal Sustainable Energy and Fuels, they overview the different techniques people have used to improve the multiple parameters required for novel supercapacitors.

Such devices could be made in soft and flexible freestanding films, which could power electronics embedded in smart clothing, wearable and implantable devices, and soft robotics. The developers hope to make their contribution to provide ubiquitous power for the emerging Internet of Things (IoT) devices, which is still a significant challenge ahead.

The research was published in ACS Energy Letters.

ENERGY TECH
IV and cellular fluids power flexible batteries
Washington DC (SPX) Aug 16, 2017
Researchers in China have engineered bendable batteries that can run on body-inspired liquids such as normal IV saline solution and cell-culture medium. In their work, published August 10 in the journal Chem, the authors designed alternatives to lithium-ion batteries by focusing on the mechanical-stress demands of wearable electronics such as smartwatches and the safety requirements of implantab ... read more

Related Links
Queen Mary University of London
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
India must rethink infrastructure needs for 100 new 'smart' cities to be sustainable

Allowable 'carbon budget' most likely overestimated

Sparkling springs aid quest for underground heat energy sources

Google's 'moonshot' factory spins off geothermal unit

ENERGY TECH
ULEMCo plans a fuel cell approach to extend range of electric vans

Researchers clarify mystery about proposed battery material

A quick and easy way to shut down instabilities in fusion devices

IV and cellular fluids power flexible batteries

ENERGY TECH
First foundations set for Baltic Sea wind farm

Wind energy blows up storm of controversy in Mexico

U.S. extends wind energy taproots into Zambia

Night vision for bird- and bat-friendly offshore wind power

ENERGY TECH
By 2050, 139 countries could be powered by wind, solar, water

Audi Cooperates with Alta Devices on Automobiles with Solar Roofs

Renewables could bring balance to India's economic growthw.

More solar power thanks to titanium

ENERGY TECH
Fukushima operator faces $5 bn US suit over 2011 disaster

UAE nuclear programme edges toward 2018 launch

129I waste used to track ocean currents for 15,000 km after discharge from nuclear plants

Analysis highlights failings in US's advanced nuclear program

ENERGY TECH
How a bacterium can live on methanol

Cyborg bacteria outperform plants when turning sunlight into useful compounds

Stretchable biofuel cells extract energy from sweat to power wearable devices

Potato waste processing may be the road to enhanced food waste conversion

ENERGY TECH
Kuwait says oil shipments to China stable

British foreign minister visits oil-rich Libya

Norway wants tech-savvy companies offshore

Harvey forces ExxonMobil to close Baytown refining complex

ENERGY TECH
Study gives first proof that the Earth has a natural thermostat

Incomplete drought recovery may be the new normal

Asian Development Bank finds new climate finance stream

Heat map showcases extreme temperatures in Southern Europe









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.