Building a better battery layer by layer by Staff Writers Matsumoto, Japan (SPX) Oct 15, 2018
A team of researchers from Shinshu University in Nagano, Japan is now closer to a thin, high-capacity lithium-ion battery that could open the gates to better energy storage systems for electric vehicles. The research team was led by professor Katsuya Teshima, director of the Center for Energy and Environmental Science (hereinafter called CEES) at Shinshu University in Japan. They published their insights online in August in Scientific Reports. "Lithium-ion batteries are very promising energy storage systems for electric vehicles that require relatively high energy densities," said the study's author Nobuyuki Zettsu, a professor in the CEES and in the Department of Materials Chemistry at Shinshu University. "However, their high operating voltages commonly result in the oxidative decomposition of the electrode surface, which subsequently promotes various side reactions." Lithium-ion batteries store a lot of energy, but the force it takes to make the battery disperse the energy is too much - so much, in fact, that the resulting damage makes the battery lose storage capacity. To combat this issue, Zettsu and colleagues examined the electric and electrochemical properties of the high-voltage (>4.8 V, vs Li+/Li) cathode, where the electrons enter the battery cell. "Many researchers have attempted to mitigate the observed capacity fading through the reduction of the direct contact area," Zettsu said, pointing to research projects where scientists covered the surface of the cathode with different materials in an attempt to reduce erosion. "Various fundamental studies have been performed to investigate the effects of the surface coating modification; however, none of them led to a considerable performance enhancement of high-voltage cathode-based battery cells." Zettsu may have turned the tide on surface modifiers through the use of a self-assembled monolayer. His team applied an ultra-thin coating of fluoroalkylisilane to the surface of the cathodes. Fluoroalkylisilane, a type of silicone, organizes itself into the most efficient arrangement to conduct lithium ions and insulate electrons while remaining only one atom thick. "We discovered... that coating the surface of the active material with a self-assembled monolayer... promoted efficient transportation within the electrodes, while also suppressing the side reactions occurring at the electrode and electrolyte interface," Zettsu said. "This coating provided improvement in both the power density and the cyclability in high-voltage lithium-ion batteries." The researchers saw that the direct contact between the cathode and the electrolyte entering the battery was minimized, and that the capacity of the battery did not degrade even after it was cycled one hundred times. "The deposited self-assembled monolayer coatings reduced the activation barrier for the lithium ion transfer and stabilized ions near the surface, which positively affected the electrochemical reactions occurring at the interface between the electrode and electrolyte," Zettsu said. "The surface stabilization coatings represent a game-changing technology for the development of high-voltage cathode materials without the limitation of the electrochemical dilemma of efficiency versus stabilization." However, Zettsu said, the full effects produced by the surface coating on the full battery system need to be examined in greater detail to better understand any potential negative side-effects. "Our results can provide new directions for designing lithium-ion batteries based on high-voltage systems with superior electrochemical performance," Zettsu said. Zettsu plans to introduce this surface treatment technology to the market by 2022 in cooperation with automobile and cell manufacturers, with the aim of creating high-energy batteries that are also environmentally friendly. "Due to the world's environmental regulations, the push towards electric and hybrid automobiles is proceeding at a steady momentum. The performance level required for lithium ion batteries is very high," Zettsu said. "Currently, we are working on manufacturing real battery cells for plug-in hybrid vehicles and battery electric vehicles using the coating process and experiments in automatic driving modes."
Chile lithium miner shareholder sue to block sale to China's Tianqi Santiago (AFP) Oct 11, 2018 The controlling shareholder in Chile's lithium producer SQM has mounted a legal challenge to halt the sale of nearly a quarter of the company to Chinese group Tianqi. Pampa Calichera, Potasios de Chile and Global Mining - collectively known as the Pampa Group which holds 29.12 percent of SQM - said the decision by Chilean regulators to allow the deal breaks competition rules. SQM operates one of the world's largest lithium mines on the Atacama salt flats in northern Chile. Lithium is used in b ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |