Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Breaking up water: Controlling molecular vibrations to produce hydrogen
by Staff Writers
Lausanne, Switzerland (SPX) May 14, 2014


File image.

Natural gas (methane) can be converted into hydrogen (H2), which is used in clean energy, synthetic fertilizers, and many other chemicals. The reaction requires water and a nickel catalyst. Methane and water molecules attach on the catalyst's surface, where they dissociate into their atomic components.

These then recombine to form different compounds like H2 and CO. Previous research has focused mainly on understanding how methane dissociates, but experimental constraints have limited research into water dissociation. Publishing in Science, EPFL scientists have used lasers to determine for the first time how specific vibrations in a water molecule affect its ability to dissociate. The experimental results were used to optimize theoretical models for water dissociation (University of New Mexico), which can impact the design of future catalysts.

Methane is widely used on an industrial scale to produce hydrogen, which is used as a clean fuel and as raw material to produce ammonia used for synthetic fertilizers.

The process used is referred to as 'steam-reforming' because it involves methane gas reacting with water steam. This reaction requires a metal catalyst that allows the molecules to dissociate and recombine efficiently. But while the details of methane dissociation have been studied for over a decade, the way water molecules separate has remained elusive.

Fine-tuning vibrations with lasers
The team of Rainer Beck at EPFL, have shown that water dissociation depends strongly on the internal vibrations between its hydrogen and oxygen atoms. In a molecule, the atoms are not static but instead may vibrate in different ways.

In a water molecule, the two oxygen atoms can vibrate like a scissor ("scissoring"), or can stretch back and forth either together ("symmetrical stretching") or in turns ("asymmetrical stretching"). "These 'stretches' between the oxygen and the hydrogen atoms play a big role in how well or poorly the water molecule can dissociate on a catalyst", says Beck.

Controlling different types of vibrations is the key to understanding a water molecule's ability to dissociate under mild conditions. Employing nickel as a catalyst - commonly used in steam reformation - the team used lasers to precisely control how water molecules are being excited.

"If you heat up the system with e.g. a flame, you excite all the degrees of freedom at the same time", explains Beck. "You also increase its kinetic energy, so all the water molecules hit the nickel surface at higher speeds, but you have no control over the individual vibrations of the atoms. With a laser, we can selectively excite one type of vibration, which allows us to measure one energy state at a time."

The data showed that the degree of stretching vibrations between the hydrogen and oxygen atoms in a water molecule determines its ability to dissociate react on the catalyst. This happens because the laser adds energy to the water molecules, increasing vibrations to the point where they break up on the catalyst's surface. This point is called a 'transition state', where the water molecules are ready to react.

"Ideally, we want to deform the molecules before the hit the surface, in a way that we have biased the structure towards the transition state", says Beck. "This is why laser-selected vibrations are more efficient that just heating up the entire system: we are putting the energy where it needs to be to break the water molecule's bonds."

From experiment to theory
The unprecedented ability to excite specific types of vibrations allowed theoreticians at the University of New Mexico to calculate all the forces between the atoms and the nickel catalyst surface, and simulate what happens when the water molecule hits the catalyst surface with each type of vibration. Without these experimental measurements, such calculations would lack accuracy.

"With our data, the theoreticians can directly compare their model to the experimental data one vibration type at a time, which is far more accurate", says Beck. "This allows for the optimization of dissociation models that can then better predict how other molecules than water or methane will react on a given surface. Our state-resolved experiments are meant to guide the development of predictive theory."

This optimization of theoretical models can also lead to the faster and more efficient development of catalysts for a range of industrial and commercial chemical reactions. As Beck explains: "You can use a computer model to e.g. vary the spacing of the atoms of the catalyst or change the structure of its surface. This is a cheaper or more efficient way to find a good catalyst, rather than having to do trial-and-error experiments. But in order to trust theoretical model, we need this data to test them against."

This work represents a collaboration between EPFL's Group for Gas-Surface Dynamics (GGSD) and the University of New Mexico's Department of Chemistry and Chemical Biology. Hundt PM, Jiang B, van Reijzen ME, Guo H, Beck RD. 2014. Vibrationally Promoted Dissociation of Water on Ni(111). Science 2 May 2014

.


Related Links
Ecole Polytechnique Federale de Lausanne
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Sweden's Vattenfall abandons research on CO2 storage
Stockholm (AFP) May 06, 2014
Swedish energy giant Vattenfall said Tuesday that it had given up its research on CO2 capture and storage, intended to make the company's coal power plants greener. "Vattenfall will discontinue its R&D (research and development) activities regarding coal power with CCS (carbon capture and storage)," the group said in a statement explaining its new research plans. The state-owned giant ha ... read more


ENERGY TECH
Caltech's Sustainability Institute Gets Funding to Solve Global Energy Problems

US House approves major Africa power bid

Changing Renewable Energy Target would damage investment and throw away jobs

Germany now EU's worst polluter as CO2 emissions rise

ENERGY TECH
Energy device for flexible electronics packs a lot of power

Why Hasn't The US Gone After Gazprom?

Vietnam sea spat part of China's larger strategy: experts

Alaska governor signs natural gas bill pipeline measure

ENERGY TECH
Offshore wind supported with U.S. federal funding

GDF Suez, others, selected to build offshore wind farms

U.S. moves closer to first-ever offshore wind farm

Irish 'green paper' outlines transition to a low-carbon economy

ENERGY TECH
AREVA commissions molten salt energy storage demonstration

IEA says extra $44 tn needed for clean energy future

Sun sets on Spaniards' solar power dreams

More people getting their paychecks from renewable energy sector, study finds

ENERGY TECH
Obama sends Vietnam nuclear deal to Congress

Fewer US nuclear plants could curb climate change fight

Westinghouse Expands to Meet Latin America's Energy Needs

Exelon buys Pepco for $6.83 bn in energy deal

ENERGY TECH
Plants' Oil-Desaturating Enzymes Pair Up to Channel Metabolites

SE Asia palm oil problems could hit consumers worldwide

Boeing, Embraer team for biofuel use

Fueling aviation with hardwoods

ENERGY TECH
The Phantom Tiangong

New satellite launch center to conduct joint drill

China issues first assessment on space activities

China launches experimental satellite

ENERGY TECH
Lebanon faces water crisis after record winter drought

US Republicans harden positions on climate change

NASA's Role in Climate Assessment

US warns of wide climate impact




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.