Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Big Step for Next-Gen Fuel Cells and Electrolyzers
by Lynn Yarris for Berkeley News
Berkeley CA (SPX) Mar 04, 2014


Peidong Yang is a chemist and leading authority on nanomaterials who holds joint appointments with Berkeley Lab, UC Berkeley and the Kavli Energy NanoSciences Institute at Berkeley. Image courtesy Roy Kaltschmidt.

A big step in the development of next-generation fuel cells and water-alkali electrolyzers has been achieved with the discovery of a new class of bimetallic nanocatalysts that are an order of magnitude higher in activity than the target set by the U.S. Department of Energy (DOE) for 2017.

The new catalysts, hollow polyhedral nanoframes of platinum and nickel, feature a three-dimensional catalytic surface activity that makes them significantly more efficient and far less expensive than the best platinum catalysts used in today's fuel cells and alkaline electrolyzers. This research was a collaborative effort between DOE's Lawrence Berkeley National Laboratory (Berkeley Lab) and Argonne National Laboratory (ANL).

"We report the synthesis of a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum/nickel bimetallic nanocrystals," says Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, who led the discovery of these new catalysts.

"Our catalysts feature a unique hollow nanoframe structure with three-dimensional platinum-rich surfaces accessible for catalytic reactions. By greatly reducing the amount of platinum needed for oxygen reduction and hydrogen evolution reactions, our new class of nanocatalysts should lead to the design of next-generation catalysts with greatly reduced cost but significantly enhanced activities."

Yang, who also holds appointments with the University of California (UC) Berkeley and the Kavli Energy NanoSciences Institute at Berkeley, is one of the corresponding authors of a paper in Science that describes this research. The paper is titled "Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces." The other corresponding author is Vojislav Stamenkovic, a chemist with ANL's Materials Science Division, who led the testing of this new class of electrocatalysts.

Fuel cells and electrolyzers can help meet the ever-increasing demands for electrical power while substantially reducing the emission of carbon and other atmospheric pollutants. These technologies are based on either the oxygen reduction reaction (fuel cells), or the hydrogen evolution reaction (electrolyzers).

Currently, the best electrocatalyst for both reactions consists of platinum nanoparticles dispersed on carbon. Though quite effective, the high cost and limited availability of platinum makes large-scale use of this approach a major challenge for both stationary and portable electrochemical applications.

"Intense research efforts have been focused on developing high-performance electrocatalysts with minimal precious metal content and cost," Yang says. "In an earlier study, the ANL scientists showed that forming a nano-segregated platinum skin over a bulk single-crystal platinum/nickel alloy enhances catalytic activity but the materials cannot be easily integrated into electrochemical devices. We needed to be able to reproduce the outstanding catalytic performance of these materials in nanoparticulates that offered high surface areas."

Yang and his colleagues at Berkeley accomplished this by transforming solid polyhedral bimetallic nanoparticles of platinum and nickel into hollow nanoframes.

The solid polyhedral nanoparticles are synthesized in the reagent oleylamine, then soaked in a solvent, such as hexane or chloroform, for either two weeks at room temperature, or for 12 hours at 120 degrees Celsius. The solvent, with its dissolved oxygen, causes a natural interior erosion to take place that results in a hollow dodecahedron nanoframe. Annealing these dodecahedron nanoframes in argon gas creates a platinum skin on the nanoframe surfaces.

"In contrast to other synthesis procedures for hollow nanostructures that involve corrosion induced by harsh oxidizing agents or applied potential, our method proceeds spontaneously in air," Yang says. "The open structure of our platinum/nickel nanoframes addresses some of the major design criteria for advanced nanoscale electrocatalysts, including, high surface-to-volume ratio, 3-D surface molecular accessibility, and significantly reduced precious metal utilization."

In electrocatalytic performance tests at ANL, the platinum/nickel nanoframes when encapsulated in an ionic liquid exhibited a 36-fold enhancement in mass activity and 22-fold enhancement in specific activity compared with platinum nanoparticles dispersed on carbon for the oxygen reduction reaction. These nanoframe electrocatalysts, modified by electrochemically deposited nickel hydroxide, were also tested for the hydrogen evolution reaction and showed that catalytic activity was enhanced by an order-of-magnitude over platinum/carbon catalysts.

"Our results demonstrate the beneficial effects of the hollow nanoframe's open architecture and surface compositional profile," Yang says. "Our technique for making these hollow nanoframes can be readily applied to other multimetallic electrocatalysts or gas phase catalysts. I am quite optimistic about its commercial viability."

Other co-authors of the Science paper in addition to Yang and Stamenkovic are Chen Chen, Yijin Kang, Ziyang Huo, Zhongwei Zhu, Wenyu Huang, Huolin Xin, Joshua Snyder, Dongguo Li, Jeffrey Herron, Manos Mavrikakis, Miaofang Chi, Karren More, Yadong Li, Nenad Markovic and Gabor Somorjai.

.


Related Links
Berkeley Lab
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Saft to supply lithium-ion batteries to power US military satellite
Cockeysville MD (SPX) Mar 03, 2014
Saft has been awarded a multi-million dollar contract from Lockheed Martin to provide Lithium-ion (Li-ion) batteries for Advanced Extremely High Frequency communication satellites to be used by the U.S. Air Force Space Command. The order continues Saft's extensive partnership with Lockheed Martin and experience in providing high-power Li-ion solutions to the satellite industry. The Advance ... read more


ENERGY TECH
US moves ahead on massive Africa power bid

US moves ahead on massive Africa power bid

Renewable Generation up 30% Last Week as Gas Consumption Plummets 35%

Simple and Elegant Building Energy Modeling for All-A Technology Transfer Tale

ENERGY TECH
Saft to supply lithium-ion batteries to power US military satellite

Swelling oil fund makes every Norwegian a millionaire

ExxonMobil chief, neighbors sue over fracking concerns

Boundless Natural Gas, Boundless Opportunities

ENERGY TECH
Taming hurricanes

Wind farms can tame hurricanes: scientists

Draft report finds no reliable link between wind farms and health effects

Czech wind power generation up 'disappointing' 15 percent in 2013

ENERGY TECH
Power Electronics PV Plant Takes Chile To 10MW

Trina Solar announces WEEE Directive compliance

Superabsorbing Design May Lower Manufacturing Cost of Thin Film Solar Cells

SMA Solar Uses Technology Tie-Up To Meet Growing Industry Challenges

ENERGY TECH
Hundreds protest dropped charges over Fukushima crisis

Ukraine crisis fuels debate on Moscow bid to expand Czech nuclear plant

Radiation affects 13 US nuclear plant employees

Obama approves Vietnam nuclear deal

ENERGY TECH
Methane leaks from palm oil wastewater are a climate concern

MSU advances algae's viability as a biofuel

Team converts sugarcane to a cold-tolerant, oil-producing crop

Pond-dwelling powerhouse's genome points to its biofuel potential

ENERGY TECH
The Next Tiangong

No Call for Yutu

What's up, Yutu

China's Jade Rabbit rover comes 'back to life'

ENERGY TECH
Decline of Bronze Age 'megacities' linked to climate change

EU environment ministers to debate 2030 climate framework

No warming hiatus for extreme hot temperatures

Climate change causes high, but predictable, extinction risks




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.