Back to basics with thermoelectric power by Staff Writers Washington DC (SPX) Apr 11, 2016
Many phenomena in physics, though well-known, are not necessarily widely understood. That's the case with thermoelectricity, which harnesses waste heat by coupling heat flux and electric current. However, understanding such phenomena is important in order to leave the door open for discovering novel manifestations of them. Thus, even today physicists working in the area of thermoelectricity continue to ask fundamental questions about the underlying physical process. For example, in a recent study, a team based in France questioned the nature of the force that puts electrons to work when a temperature difference is applied across a thermoelectric material. Now, Henni Ouerdane, affiliated to the Russian Quantum Center near Moscow, and colleagues have published in EPJ Plus a study showing that the force that puts electrons to work to harness the waste heat is linked to the ability of electrons to diffuse through the material. Potential applications in the field of electrical power production from waste heat include thermoelectric devices designed to boost power over a range spanning ten orders of magnitude: typically from microwatts to several kilowatts. One of the key factors in thermoelectricity is a measure of the strength of the mutual interaction between electric charge transport and heat transport, referred to as the Seebeck coefficient. In physical terms, this coefficient is related to the gradient of the system's electrochemical potential. In this study, the authors analyse the relationship between the thermoelectric power and the electrochemical potential in the thermoelectric system. In particular, they study this in a semiconductor with low levels of impurity, as a model for observing the Seebeck coefficient. They then establish the link between this first model and a second, which uses the laws of thermodynamics to determine how the system behaves when it is not at equilibrium. They demonstrate that the electrical current resulting from thermoelectric effects can be directly formulated from the equations governing drift-diffusion of electrons at the macroscopic scale. Y. Apertet, H. Ouerdane, C. Goupil, and Ph. Lecoeur (2016), A note on the electrochemical nature of thermoelectric power, European Physical Journal Plus 131: 76, DOI 10.1140/epjp/i2016-16076-8
Related Links Springer Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |