AI helps accelerate progress toward efficient fusion reactions by Staff Writers Plainsboro NJ (SPX) Dec 19, 2017
Before scientists can effectively capture and deploy fusion energy, they must learn to predict major disruptions that can halt fusion reactions and damage the walls of doughnut-shaped fusion devices called tokamaks. Timely prediction of disruptions, the sudden loss of control of the hot, charged plasma that fuels the reactions, will be vital to triggering steps to avoid or mitigate such large-scale events. Today, researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University are employing artificial intelligence to improve predictive capability. Researchers led by William Tang, a PPPL physicist and a lecturer with the rank and title of professor at Princeton University, are developing the code for predictions for ITER, the international experiment under construction in France to demonstrate the practicality of fusion energy. The new predictive software, called the Fusion Recurrent Neural Network (FRNN) code, is a form of "deep learning" - a newer and more powerful version of modern machine learning software, an application of artificial intelligence. "Deep learning represents an exciting new avenue toward the prediction of disruptions," Tang said. "This capability can now handle multi-dimensional data." FRNN is a deep-learning architecture that has proven to be the best way to analyze sequential data with long-range patterns. Members of the PPPL and Princeton University machine-learning team are the first to systematically apply a deep learning approach to the problem of disruption forecasting in tokamak fusion plasmas. Chief architect of FRNN is Julian Kates-Harbeck, a graduate student at Harvard University and a DOE-Office of Science Computational Science Graduate Fellow. Drawing upon expertise gained while earning a master's degree in computer science at Stanford University, he has led the building of the FRNN software.
More accurate predictions The team now aims to reach the challenging goals that ITER will require. These include producing 95 percent correct predictions when disruptions occur, while providing fewer than 3 percent false alarms when there are no disruptions. "On the test data sets examined, the FRNN has improved the curve for predicting true positives while reducing false positives," said Eliot Feibush, a computational scientist at PPPL, referring to what is called the "Receiver Operating Characteristic" curve that is commonly used to measure machine learning accuracy. "We are working on bringing in more training data to do even better."
Highly demanding "Training deep neural networks is a computationally intensive task that requires engagement of high-performance computing hardware," said Alexey Svyatkovskiy, a Princeton University big data researcher. "That is why a large part of what we do is developing and distributing new algorithms across many processors to achieve highly efficient parallel computing. Such computing will handle the increasing size of problems drawn from the disruption-relevant data base from JET and other tokamaks." The deep learning code runs on graphic processing units (GPUs) that can compute thousands of copies of a program at once, far more than older central processing units (CPUs). Tests performed on modern GPU clusters, and on world-class machines such as Titan, currently the fastest and most powerful U.S. supercomputer at the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility at Oak Ridge National Laboratory, have demonstrated excellent linear scaling. Such scaling reduces the computational run time in direct proportion to the number of GPUs used - a major requirement for efficient parallel processing.
Princeton's Tiger cluster Going forward, the researchers seek to demonstrate that this powerful predictive software can run on tokamaks around the world and eventually on ITER. Also planned is enhancement of the speed of disruption analysis for the increasing problem sizes associated with the larger data sets prior to the onset of a disruptive event. Support for this project has primarily come to date from the Laboratory Directed Research and Development funds provided by PPPL.
Washington (AFP) Dec 7, 2017 The head of the multinational nuclear fusion project known as ITER, in Washington for talks with President Donald Trump's administration, has warned US budget cuts could delay completion of the experimental reactor. Launched a decade ago by seven partners - the European Union, the United States, China, Russia, Japan, India and South Korea - the project has been plagued by delays and budget ... read more Related Links Princeton Plasma Physics Laboratory Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |