Energy News  
ENERGY TECH
Argonne scientists maximize the effectiveness of platinum in fuel cells
by Staff Writers
Lemont IL (SPX) Dec 14, 2018

file image

In the journal Science, Argonne chemists have identified a new catalyst that maximizes the effectiveness of platinum.

Platinum is a precious metal more rare than silver or gold. Renowned in the fuel cell community for its effectiveness in converting hydrogen and oxygen into water and electricity, platinum offers unrivaled activity and stability for electrochemical reactions.

But platinum is both scarce and expensive, which means scientists are looking to create practical fuel cell catalysts that use far less of the costly precious metal.

In new research from the U.S. Department of Energy's (DOE) Argonne National Laboratory, published in Science, scientists have identified a new catalyst that uses only about a quarter as much platinum as current technology by maximizing the effectiveness of the available platinum.

If you're given only a very small amount of platinum in the first place, you have to make the best use of it," - Di-Jia Liu, Argonne chemist.

In a fuel cell, platinum is used two ways - to convert hydrogen into protons and electrons, and to break oxygen bonds and eventually form water. The latter reaction, the oxygen reduction reaction, requires an especially large quantity of platinum, and scientists have been looking for a way to reduce the platinum content in oxygen reduction catalysts.

Argonne scientists found novel ways to substantially improve platinum utilization. First, they tweaked the shape of the platinum to maximize its availability and reactivity in the catalyst. In this configuration, a few layers of pure platinum atoms cover a cobalt-platinum alloy nanoparticle core to form a core-shell structure.

"If you're given only a very small amount of platinum in the first place, you have to make the best use of it," said Argonne chemist Di-Jia Liu, the corresponding author of the study. "To use a platinum-cobalt core-shell alloy allows us to make larger number of catalytically active particles to spread over the catalyst surface, but this is only the first step."

The core-shell nanoparticles on their own still could not handle a large influx of oxygen when the fuel cell needs to crank up the electric current. To increase the efficiency of the catalyst, Liu and his colleagues relied on another approach they knew well from their past research, producing a catalytically active, platinum group metal-free (PGM-free) substrate as the support for the cobalt-platinum alloy nanoparticles.

Using metal-organic frameworks as precursors, Liu and his colleagues were able to prepare a cobalt-nitrogen-carbon composite substrate in which the catalytically active centers are uniformly distributed near to the platinum-cobalt particles. Such active centers are capable of breaking the oxygen bonds by themselves and work synergistically with platinum.

"You can think of it kind of like a molecular football team," Liu said. "The core-shell nanoparticles act like defensive linemen thinly spread out all across the field, trying to tackle too many oxygen molecules at the same time. What we've done is to make the 'field' itself catalytically active, capable of assisting the tackling of oxygen."

As it turned out, the new combined catalyst not only improved activity but also the durability as compared to either component alone.

Liu and his colleagues have created a patented process that involves first heating up cobalt-containing metal-organic frameworks. As the temperature increases, some of the cobalt atoms interact with organics to form a PGM-free substrate while others are reduced to well-dispersed small metal clusters throughout the substrate. After the addition of platinum followed by annealing, platinum-cobalt core-shell particles are formed and surrounded by PGM-free active sites.

While the ultimate goal is to eliminate platinum from hydrogen fuel cell catalysts entirely, Liu said that the current research opens up a new direction in addressing both fuel cell catalyst activity and durability in a cost-effective way. "Since the new catalysts require only an ultralow amount of platinum, similar to that used in existing automobile catalytic converters, it could help to ease the transition from conventional internal combustion engines to fuel cell vehicles without disrupting the platinum supply chain and market," he said.

The study included computational modeling and advanced structural characterization done in part at Argonne's Advanced Photon Source and Center for Nanoscale Materials, both DOE Office of Science User Facilities.

Research Report: "Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks,"


Related Links
Argonne National Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Focusing on the negative is good when it comes to batteries
Pasadena CA (SPX) Dec 07, 2018
Imagine not having to charge your phone or laptop for weeks. That is the dream of researchers looking into alternative batteries that go beyond the current lithium-ion versions popular today. Now, in a new study appearing in the journal Science, chemists at several institutions, including Caltech and the Jet Propulsion Laboratory, which is managed by Caltech for NASA, as well as the Honda Research Institute and Lawrence Berkeley National Laboratory, have hit on a new way of making rechargeable batteries ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Making the world hotter: India's expected AC explosion

EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

Spain's Ibedrola sells hydro, gas-powered assets in U.K. for $929M

ENERGY TECH
Switching to a home battery won't help save the world from climate change

Focusing on the negative is good when it comes to batteries

Yin and yang: Opposites in nature, fluoride and lithium, compete for higher energy batteries

Scientists enter unexplored territory in superconductivity search

ENERGY TECH
Widespread decrease in wind energy resources found over the Northern Hemisphere

Wind power vulnerable to climate change in India

Coordinated development could help wind farms be better neighbors

Roadmap to accelerate offshore wind industry in the United States

ENERGY TECH
Lithuanian scientists' approach to perovskite solar cells - cheaper production and high efficiency

DNV GL's on-site solar lab brings advanced and reliable PV testing to the field in India

Fighting smog supports solar power

A 3D imaging technique unlocks properties of perovskite crystals

ENERGY TECH
GE Hitachi Nuclear Energy announces intent to acquire specialized expertise

Uranium in mine dust could dissolve in human lungs

Framatome signs MoU with Bruce Power for safety-related Life-Extension Program updates

Bulgaria leader opposed to increased carbon-cutting targets

ENERGY TECH
More bioplastics do not necessarily contribute to better outcomes

Agricultural waste drives us closer to greener transport

In Mauritius, sugar cane means money, renewable energy

Bioplastics aren't all that great for the climate, either, study finds

ENERGY TECH
Crude oil price lower as U.S. exports rise, China-related tensions linger

Eni to develop newly found 185M barrels of light oil offshore Angola

OPEC maintains 2019 crude oil demand forecast

Mexico delays bidding for some Pemex partners, cancels two other bids

ENERGY TECH
Saudi, US snub of climate report unsettles UN talks

Trump attacks Paris climate agreement, cites France protests

France says protests no excuse to curb climate battle

New Zealand military braces for climate change battle









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.