Algorithm could help detect and reduce power grid faults by Staff Writers Binghamton NY (SPX) Jun 01, 2016
The power grid is aging, overburdened and seeing more faults than ever, according to many. Any of those breaks could easily lead to prolonged power outages or even equipment damage. Binghamton University researchers have proved that the Singular Spectrum Analysis (SSA) algorithm may be the best tool to help authorities remotely detect and locate power grid faults. "Theoretically, the SSA algorithm is an optimal approach for accurate and quick detection. However, it has not been adopted in real-world engineering applications. We adapted and improved the algorithm for the new application in power grid areas," said Yu Chen, associate professor of electrical and computer Engineering at Binghamton University, and co-author of the paper with Zekun Yang, Ning Zhou and Aleksey Polunchenko. From a generator, through wires, through a light bulb and back again, there can't be a single break in a circuit or nothing works. Multiple complete circuits - a grid - keep electricity flowing even when one wire does go down. That redundancy provides stability but is complex and filled with vulnerable points. Beyond the simple tree limb taking out a wire in a windstorm, hackers can break in and change how electricity flows subtly, which can have a cascading and potentially catastrophic effect on infrastructure. Currently, the time and location of anomalies within the grid is determined by well-known formulas such as the Event Start Time (EST) algorithm, which calculates differing arrival times of power changes in different geographic locations. Even though the differences are incredibly small, they are enough to triangulate the location of changes. The Binghamton team used simulation data generated by the Power System Tool box to prove that the SSA algorithm is faster and more robust at finding changes in the power grid from generator or transmission line problems. SSA may even be used to predict problem spots in the future. "At the current stage, the algorithm can only detect and locate problems, and it cannot predict future problems," Zhou said. "It laid a solid foundation for the next step: prediction. Being able to detect subtle changes in the power grid promptly, our approach has the potential to predict future problems by including a power system model." Despite the confirmation of SSA's effectiveness, fine tuning is still needed, including more ways to gather accurate geolocations of problems, more simulation testing and real-world data collection to "validate the algorithm and polish it to cope with more realistic scenarios." The paper, "Singular Spectrum Analysis based Quick Online Detection of Disturbance Start Time in Power Grid," was presented at the 2015 Institute of Electrical and Electronics Engineers Global Communications Conference (IEEE GLOBECOM) in December 2016, and at an invited technical seminar at Graduate Education and Research in Information Security (GERIS) 2016 on March 8, 2016.
Related Links Binghamton University
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |