Energy News  
ENERGY TECH
Advanced energy storage material gets unprecedented nanoscale analysis
by Staff Writers
Oak Ridge TN (SPX) Mar 23, 2016


When a negative bias is applied to a two-dimensional MXene electrode, Li+ ions from the electrolyte migrate in the material via specific channels to the reaction sites, where the electron transfer occurs. Scanning probe microscopy at Oak Ridge National Laboratory has provided the first nanoscale, liquid environment analysis of this energy storage material. Image courtesy ORNL. For a larger version of this image please go here.

Researchers at the Department of Energy's Oak Ridge National Laboratory have combined advanced in-situ microscopy and theoretical calculations to uncover important clues to the properties of a promising next-generation energy storage material for supercapacitors and batteries.

ORNL's Fluid Interface Reactions, Structures and Transport (FIRST) research team, using scanning probe microscopy made available through the Center for Nanophase Materials Sciences (CNMS) user program, have observed for the first time at the nanoscale and in a liquid environment how ions move and diffuse between layers of a two-dimensional electrode during electrochemical cycling. This migration is critical to understanding how energy is stored in the material, called MXene, and what drives its exceptional energy storage properties.

"We have developed a technique for liquid environments that allows us to track how ions enter the interlayer spaces. There is very little information on how this actually happens," said Nina Balke, one of a team of researchers working with Drexel University's Yury Gogotsi in the FIRST Center, a DOE Office of Science Energy Frontier Research Center.

"The energy storage properties have been characterized on a microscopic scale, but no one knows what happens in the active material on the nanoscale in terms of ion insertion and how this affects stresses and strains in the material," Balke said.

The so-called MXene material - which acts as a two-dimensional electrode that could be fabricated with the flexibility of a sheet of paper - is based on MAX-phase ceramics, which have been studied for decades. Chemical removal of the "A" layer leaves two-dimensional flakes composed of transition metal layers - the "M" - sandwiching carbon or nitrogen layers (the "X") in the resulting MXene, which physically resembles graphite.

These MXenes, which have exhibited very high capacitance, or ability to store electrical charge, have only recently been explored as an energy storage medium for advanced batteries.

"The interaction and charge transfer of the ion and the MXene layers is very important for its performance as an energy storage medium. The adsorption processes drive interesting phenomena that govern the mechanisms we observed through scanning probe microscopy," said FIRST researcher Jeremy Come.

The researchers explored how the ions enter the material, how they move once inside the materials and how they interact with the active material. For example, if cations, which are positively charged, are introduced into the negatively charged MXene material, the material contracts, becoming stiffer.

That observation laid the groundwork for the scanning probe microscopy-based nanoscale characterization. The researchers measured the local changes in stiffness when ions enter the material. There is a direct correlation with the diffusion pattern of ions and the stiffness of the material.

Come noted that the ions are inserted into the electrode in a solution.

"Therefore, we need to work in liquid environment to drive the ions within the MXene material. Then we can measure the mechanical properties in-situ at different stages of charge storage, which gives us direct insight about where the ions are stored," he said.

Until this study the technique had not been done in a liquid environment.

The processes behind ion insertion and the ionic interactions in the electrode material had been out of reach at the nanoscale until the CNMS scanning probe microscopy group's studies. The experiments underscore the need for in-situ analysis to understand the nanoscale elastic changes in the 2D material in both dry and wet environments and the effect of ion storage on the energy storage material over time.

The researchers' next steps are to improve the ionic diffusion paths in the material and explore different materials from the MXene family. Ultimately, the team hopes to understand the process's fundamental mechanism and mechanical properties, which would allow tuning the energy storage as well as improving the material's performance and lifetime.

ORNL's FIRST research team also provided additional calculations and simulations based on density functional theory that support the experimental findings. The work was recently published in the Journal Advanced Energy Materials.

The research team in addition to Balke and Come and Drexel's Gogotsi included Michael Naguib, Stephen Jesse, Sergei V. Kalinin, Paul R.C. Kent and Yu Xie, all of ORNL.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oak Ridge National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
New fuel cell design powered by graphene-wrapped nanocrystals
Berkeley CA (SPX) Mar 17, 2016
Hydrogen is the lightest and most plentiful element on Earth and in our universe. So it shouldn't be a big surprise that scientists are pursuing hydrogen as a clean, carbon-free, virtually limitless energy source for cars and for a range of other uses, from portable generators to telecommunications towers - with water as the only byproduct of combustion. While there remain scientific chall ... read more


ENERGY TECH
Transforming the US transportation system by 2050 to address climate challenges

Economic growth no longer translates into more greenhouse gas: IEA

Long march in Bangladesh against Sundarbans power plant

China emissions goals less ambitious than 2015 cuts: plan

ENERGY TECH
Compressing turbulence to improve internal confinement fusion experiments

Hot rocks: Kenya taps geothermal heat to boost power

Ferrite boosting photocatalytic hydrogen evolution

New fuel cell design powered by graphene-wrapped nanocrystals

ENERGY TECH
Statoil testing battery storage for wind energy

Small-scale wind energy on the rise

Re-thinking renewable energy predictions

Xinjiang Goldwind now world's top wind turbine producer

ENERGY TECH
Industry tightens screws on solar panel safety

Lockheed Martin forms energy group

Ingeteam Test Labs join Intertek's global SATELLITE program

Building better solar technologies for deep space missions

ENERGY TECH
Vessel carrying plutonium departs Japan port for US

Vessel to carry plutonium to US arrives at Japanese port: media

Japan to send plutonium cache to US this weekend

France says will recapitalise energy giant EDF 'if there's a need'

ENERGY TECH
Biodiesel from sugarcane more economical than soybean

Growing Pure Algae 24 7 and Without Sunlight

Sugar-power - scientists harness the reducing potential of renewable sugars

Chemical snapshot unveils path to greener biofuel

ENERGY TECH
China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

ENERGY TECH
Climate variations analyzed 5 million years back in time

Plants won't boost global warming as much as feared: study

Zimbabwe faces worst malnutrition in 15 years: UNICEF

Human influence on climate dates back to 1930s









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.