Energy News  
ENERGY TECH
Advance in understanding of all-solid-state batteries
by Staff Writers
Harwell UK (SPX) Aug 05, 2019

Schematic of Li metal/Li6PS5Cl interface cycled at an overall current density above the CCS.

All-solid-state batteries, a battery design composed of all solid components, have gained attention as the next major advance beyond lithium ion batteries because of their potential to store more energy while being safer to operate. When capable of being produced in commercial quantities, solid-state batteries would revolutionise electric vehicles (EVs) effectively increasing driveable range or significantly decreasing volume and weight.

Yet solid-state batteries can fail after cycling (repeated charging and discharging) at practical currents, which has been one of the barriers preventing their mass commercialisation.

In a new paper published by Nature Materials entitled "Critical Stripping Current Leads to Dendrite Formation on Plating in Lithium Anode Solid Electrolyte Cells," Faraday Institution researchers at the University of Oxford have taken a step forward in understanding the mechanisms by which solid-state batteries fail--a necessary prerequisite to avoiding such failures.

Dendrites are branching networks of lithium which grow through the solid, ceramic, electrolyte during charging of a battery, causing a short circuit.

"This research adds to our fundamental knowledge of why solid-state batteries behave the way they do. We believe our improved understanding will help to inform approaches to avoid some of the problems at the lithium metal anode in solid electrolyte cells," commented Professor Peter G. Bruce of the University of Oxford's Departments of Materials and Chemistry and Principal Investigator of the Faraday Institution's SOLBAT project, whose team led the research.

Void creation at the anode of solid-state cells has long been recognised, but their role in dendrite formation has not been understood. The study uses a combination of cutting edge electrochemical and imaging techniques to form a fundamental understanding of void formation as a function of cycling and its role in dendrites and cell failure.

Significantly, parameters in the failure model correlate to key physical properties that could be used as "levers" to suppress void formation and cell failure.

"It is key to break down the scientific barriers that prevent the progression to market of technologies that will enable our vision of the future of mobility. The study by Oxford researchers is one early example of a scientific advance that the Faraday Institution was set up to drive," said Tony Harper, Director of the ISCF Faraday Battery Challenge at UK Research and Innovation.

The research: importance of critical current density on stripping
One well-recognised challenge facing scientists studying solid-state batteries is to prevent dendrite growth as batteries are cycled between a charged and uncharged state (as they would repeatedly have to do if they to be used to power EVs).

Another significant problem is void formation between the solid electrolyte and lithium anode (negatively charged electrode) during stripping (discharge of a battery), which leads to a reduced area of contact between those two parts of the battery cell.

It is difficult to separate lithium plating from stripping using an experiment with a battery cell containing the usual two electrodes. In this study researchers used three-electrode cells to study separately the processes of plating and stripping lithium metal at the lithium metal / ceramic interface on battery cycling.

Argyrodite, Li6PS5Cl, was chosen as the solid electrolyte. Such sulphides have higher conductivity than oxides and are being pursued as the electrolyte of choice by several companies attempting to commercialise solid-state batteries. Argyrodite has the advantage of being less brittle than other highly conducting sulphides.

The researchers found that if dendrite formation is to be avoided in all-solid-state battery cells, it is vital to cycle the cells below the critical current density at which voids begin to form at the lithium metal / solid electrolyte interface during lithium stripping (CCS).

This is the case even when the current density is below the threshold for dendrite formation on plating. When the current density is greater than CCS, voids accumulate on cycling, the lithium / solid electrolyte area of contact decreases correspondingly and as a result the local current density increases until it reaches a value where dendrites form on plating, leading to a short-circuit and cell failure.

It may take multiple cycles, but the research demonstrates that cell failure is inevitable if the overall current density is greater than CCS. These results show that it is not just the current density for dendrite formation that is important in achieving cycling of all-solid-state cells at practical current densities; stripping currents are also important.

The researchers also conclude the lithium metal creep is the primary mechanism of transporting lithium metal at the interface.

The team working on this discovery included a mix of theoreticians and experimentalists, in the type of multi-disciplinary research environment that the Faraday Institution fosters.

*The prizes of developing a commercial all solid-state battery for electric vehicles*

Small, non-rechargeable, solid-state batteries are growing in commercial use, for example, in medical implants such as heart monitoring. However, there remain considerable challenges associated with both the fabrication of solid-state batteries at the scale required for use in EVs, and to ensure that such devices operate safely and to acceptable performance levels over the lifetime of the EV.

Current lithium ion batteries used in EVs contain a flammable organic liquid electrolyte, through which charge-carrying lithium ions pass during the charging and discharging of the battery. This liquid presents an inherent (albeit well-managed) safety concern. The replacement of the liquid electrolyte with a solid would remove this fire risk.

Worldwide, significant scientific effort is being expended to develop new battery chemistries that would achieve battery performance (power density and energy density) that would give an EV driving experience aligned with expectations from driving cars with internal combustion engines. The elimination of the need for a liquid electrolyte would be a prerequisite for developing batteries with a lithium metal anode, which could unlock significant performance improvements.

Research paper


Related Links
The Faraday Institution
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
High-performance flow batteries offer path to grid-level renewable energy storage
Boulder CO (SPX) Jul 26, 2019
A low-cost, high-performance battery chemistry developed by University of Colorado Boulder researchers could one day lead to scalable grid-level storage for wind and solar energy that could help electrical utilities reduce their dependency on fossil fuels. The new innovation, described in the journal Joule, outlines two aqueous flow batteries, also known as redox flow batteries, which use chromium and organic binding agents to achieve exceptional voltage and high efficiencies. The components are a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Global warming = more energy use = more warming

Big energy discussion 'scrubbed from record' at UN climate talks

New York to get one of world's most ambitious carbon reduction plans

Wartsila and Summit sign Bangladesh's biggest ever service agreement to maintain Summit's 464 MW power plants

ENERGY TECH
Ultra-thin layers of rust generate electricity from flowing water

Revised computer code accurately models an instability in fusion plasmas

Harvesting energy from the human knee

A new material for the battery of the future, made in UCLouvain

ENERGY TECH
Kenya launches Africa's biggest wind farm

Stanford study shows how to improve production at wind farms

Windmill protesters placed on Dutch terror list

Can sound protect eagles from wind turbine collisions?

ENERGY TECH
A good first step toward nontoxic solar cells

'Deforming' solar cells could be clue to improved efficiency

Canadian Solar signs electricity agreement on Alberta's largest solar photovoltaic project

Treating solar cell materials reveals formation of unexpected microstructures

ENERGY TECH
UN nuclear watchdog to have new chief in place by January

EU court warns Belgium over nuclear stations

Snag-hit new French nuclear power station delayed by further 3 years

Framatome deploys new tool for innovative inspection of baffle bolts in reactor vessels

ENERGY TECH
Researchers develop technology to harness energy from mixing of freshwater and seawater

A catalyst for sustainable methanol

Solar energy becomes biofuel without solar cells

Research shows black plastics could create renewable energy

ENERGY TECH
Venezuela's power struggle drags on

Ukraine seizes Russian tanker over naval clash: prosecutor

Saudi Arabia could to expand pipeline to redirect oil from Strait of Hormuz

Ukraine takes Russian tanker linked to 2018 military seizure

ENERGY TECH
Incoming EU chief says to launch climate fund

20th-century warming 'unmatched' in 2,000 years

Politics and finance dog EU climate zero efforts

More 'reactive' land surfaces cooled the Earth down









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.