Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Acid mine drainage reduces radioactivity in fracking waste
by Staff Writers
Durham, NC (SPX) Jan 14, 2014


Acid mine drainage flows out of abandoned coal mines into many streams in the Appalachian Basin. It can be highly toxic to animals, plants and humans, and affects the quality of hundreds of waterways in Pennsylvania and West Virginia.

Much of the naturally occurring radioactivity in fracking wastewater might be removed by blending it with another wastewater from acid mine drainage, according to a Duke University-led study.

"Fracking wastewater and acid mine drainage each pose well-documented environmental and public health risks. But in laboratory tests, we found that by blending them in the right proportions we can bind some of the fracking contaminants into solids that can be removed before the water is discharged back into streams and rivers," said Avner Vengosh, professor of geochemistry and water quality at Duke's Nicholas School of the Environment.

"This could be an effective way to treat Marcellus Shale hydraulic fracturing wastewater, while providing a beneficial use for acid mine drainage that currently is contaminating waterways in much of the northeastern United States," Vengosh said. "It's a win-win for the industry and the environment."

Blending fracking wastewater with acid mine drainage also could help reduce the depletion of local freshwater resources by giving drillers a source of usable recycled water for the hydraulic fracturing process, he added.

"Scarcity of fresh water in dry regions or during periods of drought can severely limit shale gas development in many areas of the United States and in other regions of the world where fracking is about to begin," Vengosh said. "Using acid mine drainage or other sources of recycled or marginal water may help solve this problem and prevent freshwater depletion."

The peer-reviewed study was published in late December 2013 in the journal Environmental Science and Technology.

In hydraulic fracturing - or fracking, as it is sometimes called - millions of tons of water are injected at high pressure down wells to crack open shale deposits buried deep underground and extract natural gas trapped within the rock. Some of the water flows back up through the well, along with natural brines and the natural gas. This "flowback fluid" typically contains high levels of salts, naturally occurring radioactive materials such as radium, and metals such as barium and strontium.

A study last year by the Duke team showed that standard treatment processes only partially remove these potentially harmful contaminants from Marcellus Shale wastewater before it is discharged back into streams and waterways, causing radioactivity to accumulate in stream sediments near the disposal site.

Acid mine drainage flows out of abandoned coal mines into many streams in the Appalachian Basin. It can be highly toxic to animals, plants and humans, and affects the quality of hundreds of waterways in Pennsylvania and West Virginia.

Because much of the current Marcellus shale gas development is taking place in regions where large amounts of historic coal mining occurred, some experts have suggested that acid mine drainage could be used to frack shale gas wells in place of fresh water.

To test that hypothesis, Vengosh and his team blended different mixtures of Marcellus Shale fracking wastewater and acid mine drainage, all of which were collected from sites in western Pennsylvania and provided to the scientists by the industry.

After 48 hours, the scientists examined the chemical and radiological contents of 26 different mixtures. Geochemical modeling was used to simulate the chemical and physical reactions that had occurred after the blending; the results of the modeling were then verified using x-ray diffraction and by measuring the radioactivity of the newly formed solids.

"Our analysis suggested that several ions, including sulfate, iron, barium and strontium, as well as between 60 and 100 percent of the radium, had precipitated within the first 10 hours into newly formed solids composed mainly of strontium barite," Vengosh said. These radioactive solids could be removed from the mixtures and safely disposed of at licensed hazardous-waste facilities, he said. The overall salinity of the blended fluids was also reduced, making the treated water suitable for re-use at fracking sites.

"The next step is to test this in the field. While our laboratory tests show that is it technically possible to generate recycled, treated water suitable for hydraulic fracturing, field-scale tests are still necessary to confirm its feasibility under operational conditions," Vengosh said.

Andrew J. Kondash, a master's student in Vengosh's lab at Duke, was the lead author of the new study. Nathaniel R. Warner, a 2013 PhD graduate of Duke now at Dartmouth University, and Ori Lahav of Technion, in Haifa, Israel, who spent his sabbatical leave at Duke last year, were co-authors. "Radium and Barium Removal through Blending Hydraulic Fracturing Fluids with Acid Mine Drainage," Andrew J. Kondash, Nathaniel R. Warner, Ori Lahav, Avner Vengosh. Environmental Science and Technology, Dec. 24, 2013.

.


Related Links
Duke University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Japan, Ethiopia urge peace in South Sudan
Addis Ababa (AFP) Jan 13, 2014
The leaders of Japan and Ethiopia on Monday urged South Sudan's warring parties to sign a ceasefire to end weeks of fighting that has left thousands dead. "We agreed that the cessation of hostilities in South Sudan and national reconciliation is the most important way forward," Ethiopian Prime Minister, Hailemariam Desalegn, said at a joint briefing with his Japanese counterpart. The com ... read more


ENERGY TECH
Obama sets up quadrennial review of U.S. energy strategy

Li's Power Assets to spin off HK unit

US energy secretary delays India trip amid row

Suburban sprawl cancels carbon footprint savings of dense urban cores

ENERGY TECH
Acid mine drainage reduces radioactivity in fracking waste

Oil prices drop after interim Iran nuclear deal

Outside View: Asia's growing coal markets

Tax breaks for fracking firms as UK goes 'all out for shale'

ENERGY TECH
German wind farm operator Prokon warns of imminent insolvency

China to Power Ahead as Wind Turbine Rotor Blade Market Leader for Foreseeable Future

Wind Turbines Begin Providing Renewable Energy at Honda Transmission Plant in Ohio

Researchers Find Ways To Minimize Power Grid Disruptions From Wind Power

ENERGY TECH
Quantum mechanics explains efficiency of photosynthesis

Ascent Solar To Build CIGS Production Plant In Jiangsu

GS Hong Kong Solar Opens CIGS Plant In China

ConnecTables Solar Charging Stations Offer Sustainable Charging Solution

ENERGY TECH
TEPCO to siphon off radioactive water from tunnels under Fukushima plant

S. Korea president eying nuclear business on India trip

UN nuclear experts to visit Iran on Saturday: report

IAEA to support Vietnam's nuclear projects

ENERGY TECH
NREL Finds a New Cellulose Digestion Mechanism by a Fast-eating Enzyme

More to biofuel production than yield

Inexpensive technique could drive down costs of biofuel production

York scientists' significant step forward in biofuels quest

ENERGY TECH
China launches communications satellite for Bolivia

China's moon rover continues lunar survey after photographing lander

China's Yutu "naps", awakens and explores

Deep space monitoring station abroad imperative

ENERGY TECH
Europe squabbling over greenhouse gas targets

Population stability 'hope' in species' response to climate change

'Global sunscreen' plan could wreck tropics: study

Methane hydrates and global warming




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement