A paper battery powered by bacteria by Staff Writers Washington DC (SPX) Aug 21, 2018
In remote areas of the world or in regions with limited resources, everyday items like electrical outlets and batteries are luxuries. Health care workers in these areas often lack electricity to power diagnostic devices, and commercial batteries may be unavailable or too expensive. New power sources are needed that are low-cost and portable. Today, researchers report a new type of battery - made of paper and fueled by bacteria - - that could overcome these challenges. The researchers will present their results at the 256th National Meeting and Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 10,000 presentations on a wide range of science topics. "Paper has unique advantages as a material for biosensors," says Seokheun (Sean) Choi, Ph.D., who is presenting the work at the meeting. "It is inexpensive, disposable, flexible and has a high surface area. However, sophisticated sensors require a power supply. Commercial batteries are too wasteful and expensive, and they can't be integrated into paper substrates. The best solution is a paper-based bio-battery." Researchers have previously developed disposable paper-based biosensors for cheap and convenient diagnosis of diseases and health conditions, as well as for detecting contaminants in the environment. Many such devices rely on color changes to report a result, but they often aren't very sensitive. To boost sensitivity, the biosensors need a power supply. Choi wanted to develop an inexpensive paper battery powered by bacteria that could be easily incorporated into these single-use devices. So Choi and his colleagues at the State University of New York, Binghamton made a paper battery by printing thin layers of metals and other materials onto a paper surface. Then, they placed freeze-dried "exoelectrogens" on the paper. Exoelectrogens are a special type of bacteria that can transfer electrons outside of their cells. The electrons, which are generated when the bacteria make energy for themselves, pass through the cell membrane. They can then make contact with external electrodes and power the battery. To activate the battery, the researchers added water or saliva. Within a couple of minutes, the liquid revived the bacteria, which produced enough electrons to power a light-emitting diode and a calculator. The researchers also investigated how oxygen affects the performance of their device. Oxygen, which passes easily through paper, could soak up electrons produced by the bacteria before they reach the electrode. The team found that although oxygen slightly decreased power generation, the effect was minimal. This is because the bacterial cells were tightly attached to the paper fibers, which rapidly whisked the electrons away to the anode before oxygen could intervene. The paper battery, which can be used once and then thrown away, currently has a shelf-life of about four months. Choi is working on conditions to improve the survival and performance of the freeze-dried bacteria, enabling a longer shelf life. "The power performance also needs to be improved by about 1,000-fold for most practical applications," Choi says. This could be achieved by stacking and connecting multiple paper batteries, he notes. Choi has applied for a patent for the battery and is seeking industry partners for commercialization.
Doubling performance with lithium metal that doesn't catch fire Ann Arbor MI (SPX) Aug 17, 2018 - A rechargeable battery technology developed at the University of Michigan could double the output of today's lithium ion cells - drastically extending electric vehicle ranges and time between cell phone charges - without taking up any added space. By using a ceramic, solid-state electrolyte, engineers can harness the power of lithium metal batteries without the historic issues of poor durability and short-circuiting. The result is a roadmap to what could be the next generation of rechargeable b ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |