A more than 100% quantum step toward producing hydrogen fuel by Staff Writers Newark NJ (SPX) Apr 27, 2017
Efforts to reduce our dependence on fossil fuels are advancing on various significant fronts. Such initiatives include research focused on more efficient production of gaseous hydrogen fuel by using solar energy to break water down into its components of hydrogen and oxygen. Recently, in an article published in the journal Nature Energy, lead author Yong Yan, an assistant professor in the Department of Chemistry and Environmental Science, reported a key breakthrough in the basic science essential for progress toward this goal. The article, "Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%," reports on the investigative work that Yan carried out along with colleagues affiliated with the National Renewable Energy Laboratory, the Colorado School of Mines and San Diego State University. Essentially, they created what is known as a quantum dot photoelectrochemical cell that catalytically achieved quantum efficiency for hydrogen gas production exceeding 100% - in the case of their experiments an efficiency approaching 114%. Quantum dots are extremely small semiconductor particles only a few nanometers in size. (A nanometer is one-billionth of a meter.) In their device, lead sulfide quantum dots replace semiconductor materials such as silicon and copper indium gallium arsenide. The advantage is that such a photoelectrochemical device can, potentially, convert a greater portion of the solar spectrum into useful energy. The device described is able to absorb one visible solar photon and produce two, or even more, electrons through a process known as multiple exciton generation, or MEG, which are further utilized to reduce water to generate hydrogen gas. Although many scientists worldwide are engaged in efforts to achieve quantum efficiency as close as possible to 100% for solar hydrogen production, Yan's achievement in directly exceeding this threshold is a significant fundamental breakthrough. It clearly proves that the photoelectrochemical cell design he describes is much more efficient than a quantum dot solar cell with respect to quantum yield. Yan, who joined the NJIT faculty in 2016, emphasizes that this advance is at the level of basic solar science, and that the breakthrough with respect to quantum yield does not equate to a substantial increase in the ultimate solar-to-hydrogen conversion efficiency. Nonetheless, this dramatic increase in quantum yield realized with a uniquely innovative lead sulfide quantum dot photoelectrochemical device is an important development in several ways, and as such is a product of Yan's long-standing interest in renewable sources of energy, especially in novel applications of solar energy. For Yan, the research reported in Nature Energy culminated at NJIT after his previous work as a postdoc at Princeton University and at the U.S. Department of Energy's National Renewable Energy Laboratory in Colorado. The success of this leading-edge effort was made possible with funding provided, in part, by NJIT and the Department of Energy. Yan says, "These results do present the possibility of generating more energy more efficiently with such a solar-capture device in the future. This could also lead to a fundamental change in the entire process of producing hydrogen fuel. We can now obtain hydrogen fuel from water by using electricity supplied by conventional power plants that consume fossil fuels. But by building on the basic step of achieving such high quantum efficiency for solar hydrogen generation, we could make the process of producing a 'green' fuel much greener as well."
Washington DC (SPX) Apr 20, 2017 A new reconfigurable device that emits patterns of thermal infrared light in a fully controllable manner could one day make it possible to collect waste heat at infrared wavelengths and turn it into usable energy. The new technology could be used to improve thermophotovoltaics, a type of solar cell that uses infrared light, or heat, rather than the visible light absorbed by traditional sol ... read more Related Links New Jersey Institute of Technology Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |